Operando deconvolution of the degradation mechanisms of iron-nitrogen-carbon catalysts in proton exchange membrane fuel cells

被引:49
作者
Liu, Shiyang [1 ]
Meyer, Quentin [1 ]
Jia, Chen [1 ]
Wang, Shuhao [1 ]
Rong, Chengli [1 ]
Nie, Yan [1 ]
Zhao, Chuan [1 ]
机构
[1] Univ New South Wales, Sch Chem, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
FE-N-C; OXYGEN REDUCTION REACTION; ACTIVE-SITES; ELECTROCATALYST; CORROSION;
D O I
10.1039/d3ee01166f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing platinum-free catalysts for proton exchange membrane fuel cells (PEMFCs) is crucial to the hydrogen economy. While iron-nitrogen-carbon (Fe-N-C) catalysts are currently the most promising non-Pt alternative for the ORR, their poor stability in PEMFCs are challenging to understand due to the multitude of degradation mechanisms occurring simultaneously. Herein, we deconvolute these mechanisms in PEMFC over 60 hours under high load (1 A cm(-2)) using advanced electrochemical methods such as the distribution of relaxation times. This allows us to identify when iron demetallation and carbon corrosion occur and unveil an intricate degradation pathway through the operando deterioration of the triple-phase boundary. Firstly, up to 75% of the Fe-N-C active sites become inactive through iron demetallation which initially drives the voltage losses (<10 hours). Then, a five-fold increase in carbon corroded species and four-fold reduction in proton transport kinetics in the catalyst layer lengthen the gas, ionic and electronic pathways to the catalytic sites, reducing the oxygen reduction reaction (ORR) rate by three-fold and becoming the predominant degradation mechanism. These insights are captured via a combination of cyclic voltammetry and the distribution of relaxation times. Altogether, these provide unprecedented insights into this degradation mechanism while proposing operando standards to characterize unstable electrocatalysts.
引用
收藏
页码:3792 / 3802
页数:11
相关论文
共 65 条
[1]   Stability of Atomically Dispersed Fe-N-C ORR Catalyst in Polymer Electrolyte Fuel Cell Environment [J].
Ahluwalia, R. K. ;
Wang, X. ;
Osmieri, L. ;
Peng, J-K ;
Cetinbas, C. F. ;
Park, J. ;
Myers, D. J. ;
Chung, H. T. ;
Neyerlin, K. C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (02)
[2]   Deactivation, reactivation and super-activation of Fe-N/C oxygen reduction electrocatalysts: Gas sorption, physical and electrochemical investigation using NO and O2 [J].
Boldrin, Paul ;
Malko, Daniel ;
Mehmood, Asad ;
Kramm, Ulrike, I ;
Wagner, Stephan ;
Paul, Stephen ;
Weidler, Natascha ;
Kucernak, Anthony .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 292
[3]   Distribution (function) of relaxation times, successor to complex nonlinear least squares analysis of electrochemical impedance spectroscopy? [J].
Boukamp, Bernard A. .
JOURNAL OF PHYSICS-ENERGY, 2020, 2 (04)
[4]   Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: From Model Experiments to Real-Life Operation in Membrane Electrode Assemblies [J].
Castanheira, Luis ;
Dubau, Laetitia ;
Mermoux, Michel ;
Berthome, Gregory ;
Caque, Nicolas ;
Rossinot, Elisabeth ;
Chatenet, Marian ;
Maillard, Frederic .
ACS CATALYSIS, 2014, 4 (07) :2258-2267
[5]   Carbon corrosion and performance degradation mechanism in a proton exchange membrane fuel cell with dead-ended anode and cathode [J].
Chen, Ben ;
Wang, Jun ;
Yang, Tianqi ;
Cai, Yonghua ;
Zhang, Caizhi ;
Chan, Siew Hwa ;
Yu, Yi ;
Tu, Zhengkai .
ENERGY, 2016, 106 :54-62
[6]   Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts [J].
Chen, Linyun ;
Liu, Xiaofang ;
Zheng, Lirong ;
Li, Yongcheng ;
Guo, Xu ;
Wan, Xin ;
Liu, Qingtao ;
Shang, Jiaxiang ;
Shui, Jianglan .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 256
[7]   Visualizing electronic interactions between iron and carbon by X-ray chemical imaging and spectroscopy [J].
Chen, Xiaoqi ;
Xiao, Jianping ;
Wang, Jian ;
Deng, Dehui ;
Hu, Yongfeng ;
Zhou, Jigang ;
Yu, Liang ;
Heine, Thomas ;
Pan, Xiulian ;
Bao, Xinhe .
CHEMICAL SCIENCE, 2015, 6 (05) :3262-3267
[8]   Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability [J].
Cheng, Qingqing ;
Han, Shaobo ;
Mao, Kun ;
Chen, Chi ;
Yang, Lijun ;
Zou, Zhiqing ;
Gu, Meng ;
Hu, Zheng ;
Yang, Hui .
NANO ENERGY, 2018, 52 :485-493
[9]   Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes [J].
Dastafkan, Kamran ;
Shen, Xiangjian ;
Hocking, Rosalie K. ;
Meyer, Quentin ;
Zhao, Chuan .
NATURE COMMUNICATIONS, 2023, 14 (01)
[10]   The Observer Effect [J].
de Bianchi, Massimiliano Sassoli .
FOUNDATIONS OF SCIENCE, 2013, 18 (02) :213-243