Exploiting Patch Sizes and Resolutions for Multi-Scale Deep Learning in Mammogram Image Classification

被引:9
作者
Quintana, Gonzalo Inaki [1 ,2 ]
Li, Zhijin [1 ]
Vancamberg, Laurence [1 ]
Mougeot, Mathilde [2 ]
Desolneux, Agnes [2 ]
Muller, Serge [1 ]
机构
[1] GE HealthCare, 283 Rue Miniere, F-78530 Buc, France
[2] ENS Paris Saclay, Ctr Borelli, F-91190 Gif Sur Yvette, France
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 05期
关键词
breast imaging; artificial intelligence; deep learning; computer aided detection or diagnosis (CAD); convolutional neural networks (CNNs); multi-scale classification;
D O I
10.3390/bioengineering10050534
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recent progress in deep learning (DL) has revived the interest on DL-based computer aided detection or diagnosis (CAD) systems for breast cancer screening. Patch-based approaches are one of the main state-of-the-art techniques for 2D mammogram image classification, but they are intrinsically limited by the choice of patch size, as there is no unique patch size that is adapted to all lesion sizes. In addition, the impact of input image resolution on performance is not yet fully understood. In this work, we study the impact of patch size and image resolution on the classifier performance for 2D mammograms. To leverage the advantages of different patch sizes and resolutions, a multi patch-size classifier and a multi-resolution classifier are proposed. These new architectures perform multi-scale classification by combining different patch sizes and input image resolutions. The AUC is increased by 3% on the public CBIS-DDSM dataset and by 5% on an internal dataset. Compared with a baseline single patch size and single resolution classifier, our multi-scale classifier reaches an AUC of 0.809 and 0.722 in each dataset.
引用
收藏
页数:14
相关论文
共 46 条
[21]   National Performance Benchmarks for Modern Screening Digital Mammography: Update from the Breast Cancer Surveillance Consortium [J].
Lehman, Constance D. ;
Arao, Robert F. ;
Sprague, Brian L. ;
Lee, Janie M. ;
Buist, Diana S. M. ;
Kerlikowske, Karla ;
Henderson, Louise M. ;
Onega, Tracy ;
Tosteson, Anna N. A. ;
Rauscher, Garth H. ;
Miglioretti, Diana L. .
RADIOLOGY, 2017, 283 (01) :49-58
[22]  
Leibig C, 2022, LANCET DIGIT HEALTH, V4, pE507, DOI 10.1016/S2589-7500(22)00070-X
[23]  
Lin TY, 2017, Arxiv, DOI [arXiv:1612.03144, 10.48550/arxiv.1612.03144]
[24]   Robust Collaborative Clustering of Subjects and Radiomic Features for Cancer Prognosis [J].
Liu, Hangfan ;
Li, Hongming ;
Habes, Mohamad ;
Li, Yuemeng ;
Boimel, Pamela ;
Janopaul-Naylor, James ;
Xiao, Ying ;
Ben-Josef, Edgar ;
Fan, Yong .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (10) :2735-2744
[25]  
Loshchilov I., 2016, SGDR STOCHASTIC GRAD
[26]   Effects of Mammography Screening Under Different Screening Schedules: Model Estimates of Potential Benefits and Harms [J].
Mandelblatt, Jeanne S. ;
Cronin, Kathleen A. ;
Bailey, Stephanie ;
Berry, Donald A. ;
de Koning, Harry J. ;
Draisma, Gerrit ;
Huang, Hui ;
Lee, Sandra J. ;
Munsell, Mark ;
Plevritis, Sylvia K. ;
Ravdin, Peter ;
Schechter, Clyde B. ;
Sigal, Bronislava ;
Stoto, Michael A. ;
Stout, Natasha K. ;
van Ravesteyn, Nicolien T. ;
Venier, John ;
Zelen, Marvin ;
Feuer, Eric J. .
ANNALS OF INTERNAL MEDICINE, 2009, 151 (10) :738-W247
[27]   International evaluation of an AI system for breast cancer screening [J].
McKinney, Scott Mayer ;
Sieniek, Marcin ;
Godbole, Varun ;
Godwin, Jonathan ;
Antropova, Natasha ;
Ashrafian, Hutan ;
Back, Trevor ;
Chesus, Mary ;
Corrado, Greg C. ;
Darzi, Ara ;
Etemadi, Mozziyar ;
Garcia-Vicente, Florencia ;
Gilbert, Fiona J. ;
Halling-Brown, Mark ;
Hassabis, Demis ;
Jansen, Sunny ;
Karthikesalingam, Alan ;
Kelly, Christopher J. ;
King, Dominic ;
Ledsam, Joseph R. ;
Melnick, David ;
Mostofi, Hormuz ;
Peng, Lily ;
Reicher, Joshua Jay ;
Romera-Paredes, Bernardino ;
Sidebottom, Richard ;
Suleyman, Mustafa ;
Tse, Daniel ;
Young, Kenneth C. ;
De Fauw, Jeffrey ;
Shetty, Shravya .
NATURE, 2020, 577 (7788) :89-+
[28]   Breast screening review-a radiologist's perspective [J].
Michell, M. J. .
BRITISH JOURNAL OF RADIOLOGY, 2012, 85 (1015) :845-847
[29]   Breast Cancer Diagnosis in Two-View Mammography Using End-to-End Trained EfficientNet-Based Convolutional Network [J].
Petrini, Daniel G. P. ;
Shimizu, Carlos ;
Roela, Rosimeire A. ;
Valente, Gabriel Vansuita ;
Azevedo Koike Folgueira, Maria Aparecida ;
Kim, Hae Yong .
IEEE ACCESS, 2022, 10 :77723-77731
[30]   A fully automated deep learning-based network for detecting COVID-19 from a new and large lung CT scan dataset [J].
Rahimzadeh, Mohammad ;
Attar, Abolfazl ;
Sakhaei, Seyed Mohammad .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68