共 50 条
DFT and In-silico Investigations, along with In-vitro Antitumor and Antimicrobial Assessments of Pharmacological Molecules
被引:3
|作者:
Alsehli, Mosa H. H.
[1
]
Seth, Daya S. S.
[2
]
El-Gaby, Mohamed S. A.
[3
]
Okasha, Rawda M. M.
[1
]
Hagar, Mohamed
[4
]
Afifi, Tarek H. H.
[1
]
Naqvi, Arshi
[1
,2
]
机构:
[1] Taibah Univ, Coll Sci, Dept Chem, Al Madina Al Munawwara, Saudi Arabia
[2] St Johns Coll, Chem Dept, Agra 282001, UP, India
[3] Al Azhar Univ Assuit, Fac Sci, Dept Chem, Assiut 71524, Egypt
[4] Alexandria Univ, Fac Sci, Chem Dept, Alexandria 21321, Egypt
关键词:
Coumarin;
benzocoumarin;
molecular docking;
in-vitro screenings;
DFT calculations;
antitumor;
COUMARIN DERIVATIVES;
ANTICONVULSANT ACTIVITY;
PYRAZOLE DERIVATIVES;
ACID-DERIVATIVES;
DRUG DISCOVERY;
ANTIOXIDANT;
DOCKING;
CANCER;
CYTOTOXICITY;
SOLUBILITY;
D O I:
10.2174/1570179419666220913141629
中图分类号:
O62 [有机化学];
学科分类号:
070303 ;
081704 ;
摘要:
Background Molecules bearing an active methylene bridge are one of the most fruitful and remarkable precursors that have been incorporated into the synthetic strategy of an assortment of bioactive compounds. Objective The reactive methylene derivatives have been endowed with multiple reactions, which target biological and medicinal applications and result from their structural diversity and discrete reactivity. Methods The present report endeavors to synthesize, characterize, and in-vitro evaluate several novel propanoic acids, coumarin, and pyrazole derivatives as antimicrobial and antiproliferative agents. The in-silico molecular docking, physicochemical, pharmacokinetic/ADMET, bioactivity, and drug-likeness predictions were conducted for all the synthesized compounds. Results The highest docking score is -9.9 and -8.3 kcal/mol, respectively, for compound 9 (azo-coumarin) and 13 (acrylic acid derivative) with the target proteins E. coli topoisomerase II, DNA gyrase subunit B and PI3K p110 alpha domain, respectively. Moreover, this study predicts the synthesized molecules that may inhibit the novel COVID-19, obtained through virtual screenings only, where compounds 9, 13, 14, 17, and 19 came to the limelight with good docking scores i.e., more than -8 Kcal/mol. Safety profiling of the most potent compound 9 was utilized against normal cell lines and the hemolytic effect on RBCs. Conclusion The in-silico ADMET studies of the synthesized compounds revealed moderate to good -likeness, high gastro intestinal (GI) absorption, and inhibiting the Cytochrome CYP2C19 and CYP2C9 and all the derivatives possess non-cancerous nature. The in-vitro screening demonstrated that several of the novel molecules are promising drug candidates. The density functional theory (DFT) theoretical calculations were performed to calculate the energy levels of the FMOs and their energy gaps, dipole moment, and molecular electrostatic potential. Such parameters, along with the physicochemical parameters, could be a good tool to confirm biological activity.
引用
收藏
页码:523 / 545
页数:23
相关论文