Knapsack and the power word problem in solvable Baumslag-Solitar groups

被引:3
作者
Ganardi, Moses [1 ]
Lohrey, Markus [2 ]
Zetzsche, Georg [1 ]
机构
[1] Max Planck Inst Software Syst MPI SWS, Saarbrucken, Germany
[2] Univ Siegen, Siegen, Germany
关键词
Computational group theory; matrix problems; Baumslag-Solitar groups; EXTENSIONS; COMPLEXITY; CIRCUITS;
D O I
10.1142/S0218196723500285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the power word problem for certain metabelian subgroups of GL(2, C) (including the solvable Baumslag-Solitar groups BS(1, q) = a, t | tat(-1) = a(q)) belongs to the circuit complexity class TC0. In the power word problem, the input consists of group elements g1,..., gd and binary encoded integers n1,..., nd and it is asked whether g(n1) (1) center dot center dot center dot g(nd) (d) = 1 holds. Moreover, we prove that the knapsack problem for BS(1, q) is NPcomplete. In the knapsack problem, the input consists of group elements g1,..., gd, h and it is asked whether the equation g(x1) (1) center dot center dot center dot g (xd) (d) = h has a solution in N-d. For the more general case of a system of so-called exponent equations, where the exponent variables xi can occur multiple times, we show that solvability is undecidable for BS(1, q).
引用
收藏
页码:617 / 639
页数:23
相关论文
共 37 条
[21]   A rigidity result for crossed products of actions of Baumslag-Solitar groups [J].
Meesschaert, Niels .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (14)
[22]   Some Baumslag-Solitar groups are two-bridge virtual knot groups [J].
Jader Mira-Albanes, Jhon ;
Gregorio Rodriguez-Nieto, Jose ;
Patricia Salazar-Diaz, Olga .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2017, 26 (04)
[23]   Embeddings of trees, cantor sets and solvable Baumslag–Solitar groups [J].
Patrick S. Nairne .
Geometriae Dedicata, 2023, 217
[24]   Two remarks on the first-order theories of Baumslag-Solitar groups [J].
Casals-Ruiz, M. ;
Kazachkov, I. V. .
SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (05) :805-809
[25]   Two remarks on the first-order theories of Baumslag-Solitar groups [J].
M. Casals-Ruiz ;
I. V. Kazachkov .
Siberian Mathematical Journal, 2012, 53 :805-809
[26]   Growth in Baumslag-Solitar groups II: The Bass-Serre tree [J].
Adams, Jared ;
Freden, Eric M. .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (02) :339-378
[27]   Deformation spaces of G-trees and automorphisms of Baumslag-Solitar groups [J].
Clay, Matt .
GROUPS GEOMETRY AND DYNAMICS, 2009, 3 (01) :39-69
[28]   CLASS-PRESERVING AUTOMORPHISMS OF CERTAIN HNN EXTENSIONS OF BAUMSLAG-SOLITAR GROUPS [J].
Kim, Goansu ;
Zhou, Wei .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (04) :1033-1041
[29]   The reidemeister number of any automorphism of a Baumslag-Solitar group is infinite [J].
Fel'shtyn, Alexander ;
Goncalves, Daciberg L. .
GEOMETRY AND DYNAMICS OF GROUPS AND SPACES, 2008, 265 :399-+
[30]   The Power Word Problem in Graph Products [J].
Lohrey, Markus ;
Stober, Florian ;
Weiss, Armin .
THEORY OF COMPUTING SYSTEMS, 2024, 68 (03) :403-464