Electrochemical, Scanning Electrochemical Microscopic, and In Situ Electrochemical Fourier Transform Infrared Studies of CO2 Reduction at Porous Copper Surfaces

被引:9
|
作者
Salverda, Allison [1 ]
Abner, Sharon [1 ]
Mena-Morcillo, Emmanuel [1 ]
Zimmer, Adam [2 ]
Elsayed, Abdallah [2 ]
Chen, Aicheng [1 ]
机构
[1] Univ Guelph, Electrochem Technol Ctr, Dept Chem, Guelph, ON N1G 2W1, Canada
[2] Univ Guelph, Sch Engn, Guelph, ON N1G 2W1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ELECTROCATALYTIC REDUCTION; CARBON-DIOXIDE; CATALYSTS; FORMATE; AU; ULTRAMICROELECTRODES; ELECTROREDUCTION; COMPOSITES; ELECTRODES; OXIDATION;
D O I
10.1021/acs.jpcc.3c00181
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
There is significant interest in the design of high-performance electrocatalysts for efficient electrochemical reduction of CO2 to address the pressing environmental issue and climate change. Herein, a novel copper-aluminum nanostructured catalyst is fabricated via an alloying/dealloying technique. The effect of the initial alloy's elemental composition and subsequent dealloying, via HCl acid treatments, on the stability and activity of the catalyst for electrochemical CO2 reduction is studied. The optimized porous catalyst shows high catalytic activity for the electrochemical CO2 reduction reaction (CO2RR) with current efficiencies achieving greater than 81%. Gas and liquid product analysis confirms the formation of CO, H2, and HCOO-. Scanning electrochemical microscopy was employed to monitor the activity of the catalyst and the CO2RR products. In situ electrochemical FTIR spectroscopic studies revealed the first CO2RR intermediate was carbon-bound to the acid-treated 50:50 Cu/Al (at. %) alloy surface in a monodentate orientation. The synthetic approach reported in the present study leads to a new promising electrocatalyst with superior catalytic activity and high efficiencies for the effective electrochemical reduction of CO2 to valuable products.
引用
收藏
页码:7151 / 7161
页数:11
相关论文
共 50 条
  • [41] Ultrasound-boosted selectivity of CO in CO2 electrochemical reduction
    Yang, Yang
    Feng, Yiqing
    Li, Kejian
    Ajmal, Saira
    Cheng, Hanyun
    Gong, Kedong
    Zhang, Liwu
    ULTRASONICS SONOCHEMISTRY, 2021, 76
  • [42] Shaping Copper Nanocatalysts to Steer Selectivity in the Electrochemical CO2 Reduction Reaction
    Rossi, Kevin
    Buonsanti, Raffaella
    ACCOUNTS OF CHEMICAL RESEARCH, 2022, 55 (05) : 629 - 637
  • [43] Intermetallic CuAu nanoalloy for stable electrochemical CO2 reduction
    Kuang, Siyu
    Li, Minglu
    Chen, Xiaoyi
    Chi, Haoyuan
    Lin, Jianlong
    Hu, Zheng
    Hu, Shi
    Zhang, Sheng
    Ma, Xinbin
    CHINESE CHEMICAL LETTERS, 2023, 34 (07)
  • [44] Phase engineering of metal nanocatalysts for electrochemical CO2 reduction
    Zhai, Yanjie
    Han, Peng
    Yun, Qinbai
    Ge, Yiyao
    Zhang, Xiao
    Chen, Ye
    Zhang, Hua
    ESCIENCE, 2022, 2 (05): : 467 - 485
  • [45] Covalent porous catalysts for electrochemical reduction of CO2
    Lu, Shuanglong
    Hu, Hongyin
    Sun, Huimin
    Yang, Fulin
    Zhu, Han
    Du, Mingliang
    Jin, Yinghua
    Zhang, Wei
    GREEN CHEMISTRY, 2024, 26 (10) : 5744 - 5769
  • [46] New trends in the development of CO2 electrochemical reduction electrolyzer
    Zhang, Xu
    Lu, Huixia
    Miao, Yuang
    Zhang, Yusheng
    Wang, Jianyou
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (02):
  • [47] Electrochemical Reduction of CO2 to CO on Hydrophobic Zn Foam Rod in a Microchannel Electrochemical Reactor
    Zhang, Chunxiao
    Yan, Shenglin
    Lin, Jing
    Hu, Qing
    Zhong, Juhua
    Zhang, Bo
    Cheng, Zhenmin
    PROCESSES, 2021, 9 (09)
  • [48] Porous Bilayer Electrode-Guided Gas Diffusion for Enhanced CO2 Electrochemical Reduction
    Wang, Yucheng
    Lei, Hanhui
    Xiang, Hang
    Fu, Yongqing
    Xu, Chenxi
    Jiang, Yinzhu
    Xu, Ben Bin
    Yu, Eileen Hao
    Gao, Chao
    Liu, Terence Xiaoteng
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (11):
  • [49] Copper-indium hydroxides derived electrocatalysts with tunable compositions for electrochemical CO2 reduction
    Xie, Qixian
    Larrazabal, Gaston O.
    Mab, Ming
    Chorkendorff, Ib
    Seger, Brian
    Luo, Jingshan
    JOURNAL OF ENERGY CHEMISTRY, 2021, 63 : 278 - 284
  • [50] Current state of copper-based bimetallic materials for electrochemical CO2 reduction: a review
    Zoubir, Otmane
    Atourki, Lahoucine
    Ahsaine, Hassan Ait
    BaQais, Amal
    RSC ADVANCES, 2022, 12 (46) : 30056 - 30075