Synthesis of LiFePO4/carbon/graphene for high-performance Li-ion battery

被引:18
|
作者
Liu, Xuyan [1 ]
Sun, Lei [1 ]
Vu, Ngoc Hung [2 ]
Linh, Dang Thi Hai [3 ]
Dien, Phan Thi [2 ]
Hoa, Le Thi [2 ]
Lien, Do Thi [2 ]
Nang, Ho Xuan [4 ]
Dao, Van-Duong [2 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai 200093, Peoples R China
[2] Phenikaa Univ, Fac Biotechnol Chem & Environm Engn, Hanoi 10000, Vietnam
[3] Vietnam Natl Univ, Univ Sci, Fac Environm Sci, Hanoi 10000, Vietnam
[4] Phenikaa Univ, Fac Vehicle & Energy Engn, Hanoi, Vietnam
基金
中国国家自然科学基金;
关键词
LiFePO4; carbon; graphene composites; Co-modification technology; Graphene content; Excellent electrochemical performance; GRAPHENE OXIDE; LIFEPO4; CARBON; CATHODE; FACILE; POWER;
D O I
10.1016/j.jelechem.2023.117205
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
LiFePO4/carbon/graphene (LFP/C/G) composites were synthesized through a solvothermal method which used LFP/carbon with 15 % carbon content (LFP/C-15) as a precursor and changed graphene contents. LFP with 5 % graphene content (LFP/G-5) was synthesized by the same method. The effects of co-modification technology and graphene content on LFP/C/G performance were investigated. As the results, LFP/C/G compos-ites showed a significant improvement in electrochemical properties compared to LFP/C-15 and LFP/G-5. This is attributed to the superior electrical conductivity of graphene and the excellent conductive network formed by co-modification of graphene and carbon coating. Especially, when the graphene content of LFP/C/G is 15 %, the developed material provided the greatest initial discharge specific capacity at 186.2 mAh/g at 0.1C which exceeded the theoretical specific capacity of 170 mAh/g for LFP, and the extremely high capacity retention pro-portion of 95.2 % after 100 cycles at 0.1C. This finding is a promising technique for the improvement of LFP performance by co-modifying with graphene and carbon coating.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] LiFePO4 wrapped reduced graphene oxide for high performance Li-ion battery electrode
    D. H. Nagaraju
    Mirjana Kuezma
    G. S. Suresh
    Journal of Materials Science, 2015, 50 : 4244 - 4249
  • [2] In-situ growth of LiFePO4 on graphene through controlling phase transition for high-performance Li-ion battery
    Ren, Xugang
    Li, Yunjiao
    He, Zhenjiang
    Xi, Xiaoming
    Shen, Xinjie
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [3] Study of LiFePO4 Electrode Morphology for Li-Ion Battery Performance
    Buga, Mihaela
    Rizoiu, Alexandru
    Bubulinca, Constantin
    Badea, Silviu
    Balan, Mihai
    Ciocan, Alexandru
    REVISTA DE CHIMIE, 2018, 69 (03): : 549 - 552
  • [4] Electrochemical performance of LiFePO4/GO composite for Li-ion batteries
    Rajoba, Swapnil J.
    Jadhav, Lata D.
    Kalubarme, Ramchandra S.
    Patil, Pramod S.
    Varma, S.
    Wani, B. N.
    CERAMICS INTERNATIONAL, 2018, 44 (06) : 6886 - 6893
  • [5] High-rate performance of a three-dimensional LiFePO4/graphene composite as cathode material for Li-ion batteries
    Guan, Yibiao
    Shen, Jinran
    Wei, Xufang
    Zhu, Qizhen
    Zheng, Xiaohui
    Zhou, Shuqin
    Xu, Bin
    APPLIED SURFACE SCIENCE, 2019, 481 : 1459 - 1465
  • [6] Composite LiFePO4/AC high rate performance electrodes for Li-ion capacitors
    Boeckenfeld, N.
    Kuehnel, R. -S.
    Passerini, S.
    Winter, M.
    Balducci, A.
    JOURNAL OF POWER SOURCES, 2011, 196 (08) : 4136 - 4142
  • [7] (010) facets dominated LiFePO4 nano-flakes confined in 3D porous graphene network as a high-performance Li-ion battery cathode
    Yi, Xu
    Zhang, Fuqin
    Zhang, Bao
    Yu, Wan-Jing
    Dai, Qiongyu
    Hu, Shengyong
    He, Wenjie
    Tong, Hui
    Zheng, Junchao
    Liao, Jiqiao
    CERAMICS INTERNATIONAL, 2018, 44 (15) : 18181 - 18188
  • [8] Three-Dimensional Carbon-Coated LiFePO4 Cathode with Improved Li-Ion Battery Performance
    Wang, Can
    Yuan, Xunlong
    Tan, Huiyun
    Jian, Shuofeng
    Ma, Ziting
    Zhao, Junjie
    Wang, Xuewen
    Chen, Dapeng
    Dong, Yifan
    COATINGS, 2021, 11 (09)
  • [9] Study of LiFePO4 cathode modified by graphene sheets for high-performance lithium ion batteries
    Bi, Hui
    Huang, Fuqiang
    Tang, Yufeng
    Liu, Zhanqiang
    Lin, Tianquan
    Chen, Jian
    Zhao, Wei
    ELECTROCHIMICA ACTA, 2013, 88 : 414 - 420
  • [10] Ni-doped LiFePO4/C as high-performance cathode composites for Li-ion batteries
    Liu, Yuan
    Gu, Yi-Jing
    Luo, Gui-Yang
    Chen, Zi-Liang
    Wu, Fu-Zhong
    Dai, Xin-Yi
    Mai, Yi
    Li, Jun-Qi
    CERAMICS INTERNATIONAL, 2020, 46 (10) : 14857 - 14863