Bayesian Poisson common factor model with overdispersion for mortality forecasting in multiple populations

被引:0
|
作者
Roshani, Amin [1 ]
Izadi, Muhyiddin [1 ]
Khaledi, Baha-Eldin [2 ]
机构
[1] Razi Univ, Dept Stat, Kermanshah, Iran
[2] Univ Northern Colorado, Dept Appl Stat & Res Methods, Greeley, CO USA
关键词
Bayesian analysis; Hamiltonian Monte Carlo; Lee-Carter mortality model; Mixed Poisson distribution; LEE-CARTER MODEL; PROJECTING MORTALITY; STOCHASTIC MORTALITY; MARITAL-STATUS; EXTENSION; UNCERTAINTY;
D O I
10.1080/03610918.2023.2196381
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article presents a Poisson common factor model with an overdispersion factor to predict some multiple populations' mortality rates. We use Bayesian data analysis and an extension of the Hamiltonian Monte Carlo sampler to compute the estimation of the model parameters and mortality rates prediction. We apply the proposed model to the real mortality data of some European countries. Using some model selection measures, we compare the proposed model with a log-linear model and those introduced in Antonio, Bardoutsos, and Ouburg (2015, Bayesian Poisson log-bilinear models for mortality projections with multiple populations. European Actuarial Journal 5 (2): 245-281) and Wong, Forster, and Smith (2018, Bayesian mortality forecasting with overdispersion. Insurance: Mathematics and Economics 83: 206-221).
引用
收藏
页码:5605 / 5632
页数:28
相关论文
共 50 条
  • [31] Developing measurement model using Bayesian confirmatory factor analysis in suppressing maternal mortality
    Otok, B. W.
    Purnami, S. W.
    Andari, S.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (06): : 130 - 136
  • [32] A DOUBLE COMMON FACTOR MODEL FOR MORTALITY PROJECTION USING BEST-PERFORMANCE MORTALITY RATES AS REFERENCE
    Li, Jackie
    Lee, Maggie
    Guthrie, Simon
    ASTIN BULLETIN, 2021, 51 (02): : 349 - 374
  • [33] Approximation of the Cox survival regression model by MCMC Bayesian Hierarchical Poisson modelling of factors associated with childhood mortality in Nigeria
    Fagbamigbe, A. F.
    Salawu, M. M.
    Abatan, S. M.
    Ajumobi, O.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [34] Approximation of the Cox survival regression model by MCMC Bayesian Hierarchical Poisson modelling of factors associated with childhood mortality in Nigeria
    A. F. Fagbamigbe
    M. M. Salawu
    S. M. Abatan
    O. Ajumobi
    Scientific Reports, 11
  • [35] Forecasting subnational COVID-19 mortality using a day-of-the-week adjusted Bayesian hierarchical model
    Slater, Justin J.
    Brown, Patrick E.
    Rosenthal, Jeffrey S.
    STAT, 2021, 10 (01):
  • [36] A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Crossa, Jose
    Toledo, Fernando H.
    Montesinos-Lopez, Jose C.
    Singh, Pawan
    Juliana, Philomin
    Salinas-Ruiz, Josafhat
    G3-GENES GENOMES GENETICS, 2017, 7 (05): : 1595 - 1606
  • [37] A tensor product quasi-Poisson model for estimating health effects of multiple ambient pollutants on mortality
    Li-Jun Xu
    Shuang-Quan Shen
    Li Li
    Ting-Ting Chen
    Zhi-Ying Zhan
    Chun-Quan Ou
    Environmental Health, 18
  • [38] A tensor product quasi-Poisson model for estimating health effects of multiple ambient pollutants on mortality
    Xu, Li-Jun
    Shen, Shuang-Quan
    Li, Li
    Chen, Ting-Ting
    Zhan, Zhi-Ying
    Ou, Chun-Quan
    ENVIRONMENTAL HEALTH, 2019, 18 (1)
  • [39] Multi-population mortality projection: The augmented common factor model with structural breaks
    Wang, Pengjie
    Pantelous, Athanasios A.
    Vahid, Farshid
    INTERNATIONAL JOURNAL OF FORECASTING, 2023, 39 (01) : 450 - 469
  • [40] Sparse Bayesian Group Factor Model for Feature Interactions in Multiple Count Tables Data
    Zhang, Shuangjie
    Shen, Yuning
    Chen, Irene A.
    Lee, Juhee
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2025,