Interpretable Deep Learning Framework for Land Use and Land Cover Classification in Remote Sensing Using SHAP

被引:52
|
作者
Temenos, Anastasios [1 ]
Temenos, Nikos [1 ]
Kaselimi, Maria [1 ]
Doulamis, Anastasios [1 ]
Doulamis, Nikolaos [1 ]
机构
[1] Natl Tech Univ Athens, Sch Rural Surveying & Geoinformat Engn, Athens 15780, Greece
基金
欧盟地平线“2020”;
关键词
Remote sensing; Convolutional neural networks; Correlation; Additives; Deep learning; Crops; Standards; Convolutional neural network (CNN); EuroSAT; explainable AI (XAI); land cover; land use; remote sensing; Shapley additive explanation (SHAP); BENCHMARK;
D O I
10.1109/LGRS.2023.3251652
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An interpretable deep learning framework for land use and land cover (LULC) classification in remote sensing using Shapley additive explanations (SHAPs) is introduced. It utilizes a compact convolutional neural network (CNN) model for the classification of satellite images and then feeds the results to a SHAP deep explainer so as to strengthen the classification results. The proposed framework is applied to Sentinel-2 satellite images containing 27000 images of pixel size $64 \times 64$ and operates on three-band combinations, reducing the model's input data by 77% considering that 13 channels are available, while at the same time investigating on how different spectrum bands affect predictions on the dataset's classes. Experimental results on the EuroSAT dataset demonstrate the CNN's accurate classification with an overall accuracy of 94.72 %, whereas the classification accuracy on three-band combinations on each of the dataset's classes highlights its improvement when compared to standard approaches with larger number of trainable parameters. The SHAP explainable results of the proposed framework shield the network's predictions by showing correlation values that are relevant to the predicted class, thereby improving the classifications occurring in urban and rural areas with different land uses in the same scene.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification
    Helber, Patrick
    Bischke, Benjamin
    Dengel, Andreas
    Borth, Damian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (07) : 2217 - 2226
  • [22] Extended Vision Transformer (ExViT) for Land Use and Land Cover Classification: A Multimodal Deep Learning Framework
    Yao, Jing
    Zhang, Bing
    Li, Chenyu
    Hong, Danfeng
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [23] Joint Deep Learning for land cover and land use classification
    Zhang, Ce
    Sargent, Isabel
    Pan, Xin
    Li, Huapeng
    Gardiner, Andy
    Hare, Jonathon
    Atkinson, Peter M.
    REMOTE SENSING OF ENVIRONMENT, 2019, 221 : 173 - 187
  • [24] Urban land use and land cover mapping: proposal of a classification system with remote sensing
    Azevedo, Thiago
    Matias, Lindon Fonseca
    AGUA Y TERRITORIO, 2024, (23): : 73 - 82
  • [25] Remote Sensing Based Land Cover Classification Using Machine Learning and Deep Learning: A Comprehensive Survey
    Mitra, Soma
    Basu, Saikat
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2023, 14 (02): : 381 - 399
  • [26] Remote sensing land use and land cover dynamics of Zhangye region in Western China
    Zhao, SL
    Qi, J
    Baumeister, R
    Gao, W
    Gao, ZQ
    Pan, XL
    Ma, YJ
    ECOSYSTEMS DYNAMICS, ECOSYSTEM-SOCIETY INTERACTIONS, AND REMOTE SENSING APPLICATIONS FOR SEMI-ARID AND ARID LAND, PTS 1 AND 2, 2003, 4890 : 245 - 253
  • [27] Land use land cover classification using Sentinel imagery based on deep learning models
    Sawant, Suraj
    Ghosh, Jayanta Kumar
    JOURNAL OF EARTH SYSTEM SCIENCE, 2024, 133 (02)
  • [28] A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks
    Carranza-Garcia, Manuel
    Garcia-Gutierrez, Jorge
    Riquelme, Jose C.
    REMOTE SENSING, 2019, 11 (03)
  • [29] Effective Land Use Classification Through Hybrid Transformer Using Remote Sensing Imagery
    Rehman, Muhammad Zia Ur
    Islam, Syed Mohammed Shamsul
    Ul-Haq, Anwaar
    Blake, David
    Janjua, Naeem
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 2252 - 2268
  • [30] Change Detection of Land Use and Land Cover using Remote Sensing Techniques
    Harish, Ballu
    Manjulavani, K.
    Shantosh, M.
    MadhaviSupriya, V
    2017 IEEE INTERNATIONAL CONFERENCE ON POWER, CONTROL, SIGNALS AND INSTRUMENTATION ENGINEERING (ICPCSI), 2017, : 2806 - 2810