Mechanisms and Applications of Bacterial Inoculants in Plant Drought Stress Tolerance

被引:34
|
作者
Bittencourt, Priscila Pires [1 ]
Alves, Alice Ferreira [1 ]
Ferreira, Mariana Barduco [1 ]
da Silva Irineu, Luiz Eduardo Souza [1 ]
Pinto, Vitor Batista [2 ]
Olivares, Fabio Lopes [1 ]
机构
[1] Univ Estadual Norte Fluminense Darcy Ribeiro UENF, Ctr Biociencias & Biotecnol, Lab Biol Celular & Tecidual, Nucleo Desenvolvimento Insumos Biol Agr NUDIBA, BR-28013602 Ribeiro, RJ, Brazil
[2] Univ Estadual Norte Fluminense Darcy Ribeiro UENF, Ctr Biociencias & Biotecnol, Unidade Biol Integrat, Lab Biotecnol, BR-28013602 Ribeiro, RJ, Brazil
关键词
bioinoculant; sustainable agriculture; PGPB; abiotic stress; endophytic bacteria; water-use efficiency; TRITICUM-AESTIVUM L; OSMOTIC ADJUSTMENT; HUMIC ACIDS; ANTIOXIDANT ENZYMES; STOMATAL CLOSURE; GROWTH PROMOTION; WATER-DEFICIT; RHIZOSPHERE; EXPRESSION; VOLATILES;
D O I
10.3390/microorganisms11020502
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Agricultural systems are highly affected by climatic factors such as temperature, rain, humidity, wind, and solar radiation, so the climate and its changes are major risk factors for agricultural activities. A small portion of the agricultural areas of Brazil is irrigated, while the vast majority directly depends on the natural variations of the rains. The increase in temperatures due to climate change will lead to increased water consumption by farmers and a reduction in water availability, putting production capacity at risk. Drought is a limiting environmental factor for plant growth and one of the natural phenomena that most affects agricultural productivity. The response of plants to water stress is complex and involves coordination between gene expression and its integration with hormones. Studies suggest that bacteria have mechanisms to mitigate the effects of water stress and promote more significant growth in these plant species. The underlined mechanism involves root-to-shoot phenotypic changes in growth rate, architecture, hydraulic conductivity, water conservation, plant cell protection, and damage restoration through integrating phytohormones modulation, stress-induced enzymatic apparatus, and metabolites. Thus, this review aims to demonstrate how plant growth-promoting bacteria could mitigate negative responses in plants exposed to water stress and provide examples of technological conversion applied to agroecosystems.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] The Effects of Plant-Associated Bacterial Exopolysaccharides on Plant Abiotic Stress Tolerance
    Morcillo, Rafael J. L.
    Manzanera, Maximino
    METABOLITES, 2021, 11 (06)
  • [32] Reaumuria soongorica-plant model to understand drought adaptive mechanisms of xerophyte and their potentials in improving stress tolerance in plants
    Ma, Y. M.
    Liu, R. X.
    Wang, S. S.
    Han, F.
    JOURNAL OF ENVIRONMENTAL BIOLOGY, 2023, 44 (01) : 1 - 10
  • [33] Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria
    Vurukonda, Sai Shiva Krishna Prasad
    Vardharajula, Sandhya
    Shrivastava, Manjari
    SkZ, Ali
    MICROBIOLOGICAL RESEARCH, 2016, 184 : 13 - 24
  • [34] The effects of bacterial volatile emissions on plant abiotic stress tolerance
    Liu, Xiao-Min
    Zhang, Huiming
    FRONTIERS IN PLANT SCIENCE, 2015, 6
  • [35] Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance
    Bhagat, Neeta
    Raghav, Meenu
    Dubey, Sonali
    Bedi, Namita
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2021, 31 (08) : 1045 - 1059
  • [36] The genus Portulaca as a suitable model to study the mechanisms of plant tolerance to drought and salinity
    Borsai, Orsolya
    Al Hassan, Mohamad
    Boscaiu, Monica
    Sestras, Radu E.
    Vicente, Oscar
    EUROBIOTECH JOURNAL, 2018, 2 (02) : 104 - 113
  • [37] Assessment of Drought Stress Tolerance of Mangifera indica L. Autotetraploids
    Perera-Castro, Alicia V.
    Hernandez, Beatriz
    Grajal-Martin, Maria Jose
    Gonzalez-Rodriguez, Agueda M.
    AGRONOMY-BASEL, 2023, 13 (01):
  • [38] Low-temperature stress in plants: molecular responses, tolerance mechanisms, plant biodesign and breeding applications
    Li, Ping
    Zheng, Tangchun
    Domingues, Douglas S.
    Liu, Yang
    Ahmad, Sagheer
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [39] Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants
    Ma, Ying
    Dias, Maria Celeste
    Freitas, Helena
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [40] The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance
    Gambetta, Gregory A.
    Herrera, Jose Carlos
    Dayer, Silvina
    Feng, Quishuo
    Hochberg, Uri
    Castellarin, Simone D.
    JOURNAL OF EXPERIMENTAL BOTANY, 2020, 71 (16) : 4658 - 4676