Spanning trees with at most k leaves in 2-connected K1,r-free graphs

被引:1
作者
Chen, Guantao [1 ]
Chen, Yuan [2 ]
Hu, Zhiquan [3 ]
Zhang, Shunzhe [4 ]
机构
[1] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
[2] Wuhan Text Univ, Res Ctr Nonlinear Sci, Sch Math & Phys Sci, Wuhan 430073, Peoples R China
[3] Cent China Normal Univ, Sch Math & Stat, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[4] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
关键词
Spanning tree; Leaf; Independence number; K-1; K-r; -free;
D O I
10.1016/j.amc.2023.127842
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A vertex with degree one and a vertex with degree at least three are called a leaf and a branch vertex in a tree, respectively. In this paper, we obtain that every 2-connected K-1,K-r-free graph G contains a spanning tree with at most k leaves if alpha(G) <= k + inverted right perpendiculark+1/r-3inverted left perpendicular - left perpendicular1/|r-k-3|+1 right perpendicular, where k >= 2 and r >= 4 . The upper bound is best possible. Furthermore, we prove that if a connected K-1,K- 4-free graph G satisfies that alpha (G ) <= 2k + 5 , then G contains either a spanning tree with at most k branch vertices or a block B with alpha (B) <= 2 . A related conjecture for 2-connected claw-free graphs is also posed. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:11
相关论文
共 11 条
  • [1] Broersma H, 1998, J GRAPH THEOR, V29, P227, DOI 10.1002/(SICI)1097-0118(199812)29:4<227::AID-JGT2>3.3.CO
  • [2] 2-N
  • [3] Spanning trees with at most 4 leaves in K1,5-free graphs
    Chen, Yuan
    Pham Hoang Ha
    Dang Dinh Hanh
    [J]. DISCRETE MATHEMATICS, 2019, 342 (08) : 2342 - 2349
  • [4] Spanning 3-ended trees in k-connected K 1,4-free graphs
    Chen Yuan
    Chen GuanTao
    Hu ZhiQuan
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (08) : 1579 - 1586
  • [5] Chvatal, 1972, Discrete Math., V2, P111, DOI DOI 10.1016/0012-365X(72)90079-9
  • [6] Hu ZQ, 2020, B MALAYS MATH SCI SO, V43, P2565, DOI 10.1007/s40840-019-00821-w
  • [7] Kano M, 2012, ARS COMBINATORIA, V103, P137
  • [8] Spanning trees with at most k leaves in K1,4-free graphs
    Kyaw, Aung
    [J]. DISCRETE MATHEMATICS, 2011, 311 (20) : 2135 - 2142
  • [9] Ore O., 1963, J MATH PURE APPL, V42, P21, DOI DOI 10.2307/2308928
  • [10] Spanning Trees: A Survey
    Ozeki, Kenta
    Yamashita, Tomoki
    [J]. GRAPHS AND COMBINATORICS, 2011, 27 (01) : 1 - 26