Specific capacity optimization of nickel cobalt phosphate using response surface methodology for enhanced electrochromic energy storage performance

被引:15
|
作者
Mustafa, Muhammad Norhaffis [1 ,2 ]
Abdah, Muhammad Amirul Aizat Mohd [1 ,3 ]
Numan, Arshid [1 ,3 ]
Sulaiman, Yusran [4 ,5 ]
Walvekar, Rashmi [6 ]
Khalid, Mohammad [1 ,2 ,3 ]
机构
[1] Sunway Univ, Sch Engn & Technol, Graphene & Adv Mat Res Grp GAMRG 2D, 5 Jalan Univ, Petaling Jaya 47500, Selangor, Malaysia
[2] Sunway Univ, Sch Arts, Elast Res Cluster, 5 Jalan Univ, Petaling Jaya 47500, Selangor, Malaysia
[3] Sunway Univ, Sunway Mat Smart Sci & Engn SMS2E Res Cluster, 5 Jalan Univ, Petaling Jaya 47500, Selangor, Malaysia
[4] Univ Putra Malaysia, Fac Sci, Dept Chem, UPM, Serdang 43400, Selangor, Malaysia
[5] Univ Putra Malaysia, Inst Nanosci & Nanotechnol ION2, Funct Nanotechnol Devices Lab, Serdang 43400, Selangor, Malaysia
[6] Xiamen Univ Malaysia, Sch New Energy & Chem Engn, Dept Chem Engn, Jalan Sunsuria, Sepang 43900, Selangor, Malaysia
关键词
Nickel cobalt phosphate; Response surface methodology; Central composite design; Electrochromic; Energy storage device; Specific capacity; ELECTRODE MATERIAL; RATE CAPABILITY; GRAPHENE OXIDE; SUPERCAPATTERY; SUPERCAPACITOR; NANOSTRUCTURES; EVOLUTION; NANOPARTICLES; ARRAY; CO;
D O I
10.1016/j.electacta.2022.141765
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this paper, we report the optimization of nickel cobalt phosphate (NiCoP) as a positive electrode material by response surface methodology and central composite design (RSM/CCD) for electrochromic energy storage applications. The NiCoP composite was prepared using the facile electrodeposition technique, where four input variables (concentration of precursors, number of CV cycles, and scan rate) were optimized simultaneously towards the surface response (specific capacity). The statistical analysis showed that all four factors have significantly affected the specific capacity of NiCoP. The reduced quadratic model obtained can accurately predict the specific capacity of NiCoP electrode material up to 97% with a 3% residual standard error. The novel NiCoP electrode materials display remarkable electrochromic properties (67.57 cm(2)/C) with reversible color changes from light green (0 V) to dark brown (0.5 V) and outstanding supercapacitive performance (323.74 C/g) owing to the synergistic effect of bimetallic oxides (NiCo) that help to produce more active sites, as well as increase the electrical conductivity and high surface area phosphate, which is advantageous to the transport of ions. Furthermore, the as-prepared NiCoP//Ac device shows a remarkably high specific energy of 10.88 Wh/kg at a specific power of 750 W/kg (1 A/g), and the NiCoP//Ac device is capable of retaining up to 70% of its capacity even after 5000 cycles, demonstrating good energy storage performances.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Optimizing the thermal performance of energy piles using response surface methodology
    Haridy, Salah
    Alnaqbi, Khadija
    Radwan, Ali
    Arab, Mohamed G.
    CASE STUDIES IN THERMAL ENGINEERING, 2023, 41
  • [22] Solar photovoltaic water pump performance optimization by using response surface methodology
    Waila, Vipan Chand
    Sharma, Abhishek
    Singh, Vineet
    Gupta, Naveen Kumar
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2023, 42 (06)
  • [23] Optimization for enhanced hydrogen production from Rhodobacter sphaeroides using response surface methodology
    Garimella, Swetha
    Vimal, Archana
    Merugu, Ramchander
    Kumar, Awanish
    SN APPLIED SCIENCES, 2019, 1 (02):
  • [24] Optimization of phosphate solubilization by Aspergillus niger using plackett-burman and response surface methodology
    Padmavathi, T.
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2015, 15 (03) : 781 - 793
  • [25] Optimization for enhanced hydrogen production from Rhodobacter sphaeroides using response surface methodology
    Swetha Garimella
    Archana Vimal
    Ramchander Merugu
    Awanish Kumar
    SN Applied Sciences, 2019, 1
  • [26] Optimization of Nickel Removal from Electroless Plating Industry Wastewater using Response Surface Methodology
    Ahmad, Nor Azimah
    Abu Hassan, Mohd Ariffin
    Noor, Zainura Zainon
    Evuti, Abdullahi Mohammed
    Danlami, Jibrin Mohammed
    JURNAL TEKNOLOGI, 2014, 67 (04):
  • [27] Optimization of Phosphatidylinositol-specific Phospholipase C Production Using Response Surface Methodology
    T. Palvannan
    R. Boopathy
    World Journal of Microbiology and Biotechnology, 2005, 21 : 1393 - 1399
  • [28] Optimization of phosphatidylinositol-specific phospholipase C production using response surface methodology
    Palvannan, T
    Boopathy, R
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2005, 21 (8-9) : 1393 - 1399
  • [29] Enhanced Production of Bacteriocin from Probiotics Using Optimization Techniques by Response Surface Methodology
    Selvaraj, R.
    Bharathiraja, B.
    Palani, S.
    Praveenkumar, R.
    INTERNATIONAL CONFERENCE ON AGRICULTURAL ENGINEERING: NEW TECHNOLOGIES FOR SUSTAINABLE AGRICULTURAL PRODUCTION AND FOOD SECURITY, 2014, 1054 : 261 - 269
  • [30] Experimental assessment and optimization of the performance of a biodiesel engine using response surface methodology
    Mishra, Prasheet
    Mohapatra, Taraprasad
    Sahoo, Sudhansu S.
    Padhi, Biranchi N.
    Giri, Nimay Chandra
    Emara, Ahmed
    AboRas, Kareem M.
    ENERGY SUSTAINABILITY AND SOCIETY, 2024, 14 (01):