Inference of core needle biopsy whole slide images requiring definitive therapy for prostate cancer

被引:4
作者
Tsuneki, Masayuki [1 ]
Abe, Makoto [2 ]
Ichihara, Shin [3 ]
Kanavati, Fahdi [1 ]
机构
[1] Medmain Inc, Medmain Res, 2-4-5-104 Akasaka,Chuo Ku, Fukuoka 8100042, Japan
[2] Tochigi Canc Ctr, Dept Pathol, 4-9-13 Yohnan, Utsunomiya 3200834, Japan
[3] Sapporo Kosei Gen Hosp, Dept Surg Pathol, 8-5 Kita-3 Jo Higashi,Chuo Ku, Sapporo 0600033, Japan
关键词
Transfer learning; Weakly supervised learning; Fully supervised learning; Deep learning; Prostate cancer; Active surveillance; GLEASON PATTERN 4; INTEROBSERVER-REPRODUCIBILITY; ACTIVE SURVEILLANCE; ADENOCARCINOMA; CARCINOMA;
D O I
10.1186/s12885-022-10488-5
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Prostate cancer is often a slowly progressive indolent disease. Unnecessary treatments from overdiagnosis are a significant concern, particularly low-grade disease. Active surveillance has being considered as a risk management strategy to avoid potential side effects by unnecessary radical treatment. In 2016, American Society of Clinical Oncology (ASCO) endorsed the Cancer Care Ontario (CCO) Clinical Practice Guideline on active surveillance for the management of localized prostate cancer. Methods Based on this guideline, we developed a deep learning model to classify prostate adenocarcinoma into indolent (applicable for active surveillance) and aggressive (necessary for definitive therapy) on core needle biopsy whole slide images (WSIs). In this study, we trained deep learning models using a combination of transfer, weakly supervised, and fully supervised learning approaches using a dataset of core needle biopsy WSIs (n=1300). In addition, we performed an inter-rater reliability evaluation on the WSI classification.Results We evaluated the models on a test set (n=645), achieving ROC-AUCs of 0.846 for indolent and 0.980 for aggressive. The inter-rater reliability evaluation showed s-scores in the range of 0.10 to 0.95, with the lowest being on the WSIs with both indolent and aggressive classification by the model, and the highest on benign WSIs.Conclusion The results demonstrate the promising potential of deployment in a practical prostate adenocarcinoma histopathological diagnostic workflow system.
引用
收藏
页数:18
相关论文
共 50 条
[41]   Insurance Approval for Definitive Proton Therapy for Prostate Cancer [J].
Mendenhall, William M. ;
Brooks, Eric D. ;
Smith, Stephanie ;
Morris, Christopher G. ;
Bryant, Curtis B. ;
Henderson, Randal H. ;
Nichols, Romaine C., Jr. ;
McIntyre, Kathy ;
Klein, Stuart L. ;
Mendenhall, Nancy P. .
INTERNATIONAL JOURNAL OF PARTICLE THERAPY, 2022, 8 (03) :36-42
[42]   Evaluating stability of histomorphometric features across scanner and staining variations: prostate cancer diagnosis from whole slide images [J].
Leo, Patrick ;
Lee, George ;
Shih, Natalie N. C. ;
Elliott, Robin ;
Feldman, Michael D. ;
Madabhushi, Anant .
JOURNAL OF MEDICAL IMAGING, 2016, 3 (04)
[43]   Iatrogenic Extraprostatic Extension of Prostate Cancer From a Needle Biopsy [J].
Johnson, Michael H. ;
Khani, Francesca ;
Schaeffer, Edward M. .
UROLOGY CASE REPORTS, 2015, 3 (03) :56-58
[44]   Manual prostate cancer segmentation in MRI: interreader agreement and volumetric correlation with transperineal template core needle biopsy [J].
Liechti, Marc R. ;
Muehlematter, Urs J. ;
Schneider, Aurelia F. ;
Eberli, Daniel ;
Rupp, Niels J. ;
Hotker, Andreas M. ;
Donati, Olivio F. ;
Becker, Anton S. .
EUROPEAN RADIOLOGY, 2020, 30 (09) :4806-4815
[45]   Manual prostate cancer segmentation in MRI: interreader agreement and volumetric correlation with transperineal template core needle biopsy [J].
Marc R. Liechti ;
Urs J. Muehlematter ;
Aurelia F. Schneider ;
Daniel Eberli ;
Niels J. Rupp ;
Andreas M. Hötker ;
Olivio F. Donati ;
Anton S. Becker .
European Radiology, 2020, 30 :4806-4815
[46]   Reliable Prostate Cancer Risk Mapping From MRI Using Targeted and Systematic Core Needle Biopsy Histopathology [J].
Zeevi, Tal ;
Leapman, Michael S. ;
Sprenkle, Preston C. ;
Venkataraman, Rajesh ;
Staib, Lawrence H. ;
Onofrey, John A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (03) :1084-1091
[47]   Clinical Significance of Perineural Invasion by Prostate Cancer Detected on Needle Core Biopsy Unilateral vs Bilateral Involvement [J].
Teramoto, Yuki ;
Numbere, Numbereye ;
Wang, Ying ;
Miyamoto, Hiroshi .
AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2023, 159 (02) :116-119
[48]   Gleason Pattern 5 is Frequently Underdiagnosed on Prostate Needle-core Biopsy [J].
Al-Hussain, Turki O. ;
Nagar, Michael S. ;
Epstein, Jonathan I. .
UROLOGY, 2012, 79 (01) :178-181
[49]   Optimal method for measuring tumor extent in needle biopsy specimens to identify small-volume prostate cancer [J].
Kajikawa, Keishi ;
Kanao, Kent ;
Kobayashi, Ikuo ;
Nishikawa, Genya ;
Yoshizawa, Takahiko ;
Kato, Yoshiharu ;
Watanabe, Masahito ;
Zennami, Kenji ;
Nakamura, Kogenta ;
Sumitomo, Makoto .
INTERNATIONAL JOURNAL OF UROLOGY, 2016, 23 (01) :62-68
[50]   Clinical impact of perineural invasion encircled completely vs. incompletely by prostate cancer on needle core biopsy [J].
Nwanze, Julum ;
Teramoto, Yuki ;
Wang, Ying ;
Miyamoto, Hiroshi .
HUMAN PATHOLOGY, 2024, 143 :71-74