Fully discrete best-approximation-type estimates in L∞ (I;L2(ω)d) for finite element discretizations of the transient Stokes equations

被引:3
作者
Behringer, Niklas [1 ]
Vexler, Boris [1 ]
Leykekhman, Dmitriy
机构
[1] Tech Univ Munich, Ctr Math Sci, D-85748 Garching, Germany
关键词
transient Stokes; discontinuous Galerkin method; finite elements; best approximation; pointwise error estimates; a priori estimates; PARABOLIC PROBLEMS; REGULARITY; POINTWISE; STABILITY; GRADIENT;
D O I
10.1093/imanum/drac009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we obtain an optimal best-approximation-type result for fully discrete approximations of the transient Stokes problem. For the time discretization, we use the discontinuous Galerkin method and for the spatial discretization we use standard finite elements for the Stokes problem satisfying the discrete inf-sup condition. The analysis uses the technique of discrete maximal parabolic regularity. The results require only natural assumptions on the data and do not assume any additional smoothness of the solutions.
引用
收藏
页码:852 / 880
页数:29
相关论文
共 32 条
  • [1] Abe K, 2015, ANN SCI ECOLE NORM S, V48, P537
  • [2] Higher-order discontinuous Galerkin time stepping and local projection stabilization techniques for the transient Stokes problem[J]. Ahmed, Naveed;Becher, Simon;Matthies, Gunar. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017
  • [3] Pressure-robust error estimate of optimal order for the Stokes equations: domains with re-entrant edges and anisotropic mesh grading[J]. Apel, Thomas;Kempf, Volker. CALCOLO, 2021(02)
  • [4] Ashyralyev A., 1994, OPERATOR THEORY, V69
  • [5] DISCONTINUOUS GALERKIN APPROXIMATIONS OF THE STOKES AND NAVIER-STOKES EQUATIONS[J]. Chrysafinos, Konstantinos;Walkington, Noel J. MATHEMATICS OF COMPUTATION, 2010(272)
  • [6] STATIONARY STOKES AND NAVIER-STOKES SYSTEMS ON TWO-DIMENSIONAL OR 3-DIMENSIONAL DOMAINS WITH CORNERS .1. LINEARIZED EQUATIONS[J]. DAUGE, M. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989(01)
  • [7] De Simon L., 1964, REND SEMIN MAT U PAD, V34, P205
  • [8] Adaptive finite element methods for parabolic problems - VI: Analytic semigroups[J]. Eriksson, K;Johnson, C;Larsson, S. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998(04)
  • [9] ADAPTIVE FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS .2. OPTIMAL ERROR-ESTIMATES IN L-INFINITY-L(2) AND L-INFINITY-L-INFINITY[J]. ERIKSSON, K;JOHNSON, C. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995(03)
  • [10] Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9