Deep learning-based multidimensional feature fusion for classification of ECG arrhythmia

被引:30
作者
Cui, Jianfeng [1 ]
Wang, Lixin [2 ]
He, Xiangmin [2 ]
De Albuquerque, Victor Hugo C. [3 ]
AlQahtani, Salman A. [4 ]
Hassan, Mohammad Mehedi [5 ]
机构
[1] Xiamen Univ Technol, Sch Software Engn, Xiamen, Peoples R China
[2] Xiamen Univ Technol, Sch Comp & Informat Engn, Xiamen, Peoples R China
[3] Univ Porto FEUP, Fac Engn, Dept Mech Engn, Porto, Portugal
[4] King Saud Univ, Coll Comp & Informat Sci, Comp Engn Dept, Riyadh 11543, Saudi Arabia
[5] King Saud Univ, Coll Comp & Informat Sci, Informat Syst Dept, Riyadh 11543, Saudi Arabia
基金
中国博士后科学基金;
关键词
ECG signals; Arrhythmia classification; Feature fusion; 1D-CNN4; NEURAL-NETWORK; INTERFERENCE; DIAGNOSIS; SYSTEM;
D O I
10.1007/s00521-021-06487-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature extraction plays an important role in arrhythmia classification, and successful arrhythmia classification generally depends on ECG feature extraction. This paper proposed a feature extraction method combining traditional approaches and 1D-CNN aiming to find the optimal feature set to improve the accuracy of arrhythmia classification. The proposed method is verified by using the MIT-BIH arrhythmia benchmark database. It is found that the features extracted by 1D-CNN and discrete wavelet transform form the optimal feature set with the average classification accuracy up to 98.35%, which is better than the latest methods.
引用
收藏
页码:16073 / 16087
页数:15
相关论文
共 60 条
[11]   Adapting to unknown smoothness via wavelet shrinkage [J].
Donoho, DL ;
Johnstone, IM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1200-1224
[12]  
Duda RO., 2004, Pattern Classification, V2nd
[13]   A framework for collaborative computing and multi-sensor data fusion in body sensor networks [J].
Fortino, Giancarlo ;
Galzarano, Stefano ;
Gravina, Raffaele ;
Li, Wenfeng .
INFORMATION FUSION, 2015, 22 :50-70
[14]   BodyCloud: A SaaS approach for community Body Sensor Networks [J].
Fortino, Giancarlo ;
Parisi, Daniele ;
Pirrone, Vincenzo ;
Di Fatta, Giuseppe .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2014, 35 :62-79
[15]   ECG classification using three-level fusion of different feature descriptors [J].
Golrizkhatami, Zahra ;
Acan, Adnan .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 114 :54-64
[16]   Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges [J].
Gravina, Raffaele ;
Alinia, Parastoo ;
Ghasemzadeh, Hassan ;
Fortino, Giancarlo .
INFORMATION FUSION, 2017, 35 :68-80
[17]   Automatic Methods for the Detection of Accelerative Cardiac Defense Response [J].
Gravina, Raffaele ;
Fortino, Giancarlo .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2016, 7 (03) :286-298
[18]   A deep learning-based driver distraction identification framework over edge cloud [J].
Gumaei, Abdu ;
Al-Rakhami, Mabrook ;
Hassan, Mohammad Mehedi ;
Alamri, Atif ;
Alhussein, Musaed ;
Razzaque, Md. Abdur ;
Fortino, Giancarlo .
NEURAL COMPUTING & APPLICATIONS, 2020,
[19]  
Haykin S. S., 2002, Adaptive filter theory
[20]   A Generic and Robust System for Automated Patient-Specific Classification of ECG Signals [J].
Ince, Turker ;
Kiranyaz, Serkan ;
Gabbouj, Moncef .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (05) :1415-1426