Deep learning-based multidimensional feature fusion for classification of ECG arrhythmia

被引:30
作者
Cui, Jianfeng [1 ]
Wang, Lixin [2 ]
He, Xiangmin [2 ]
De Albuquerque, Victor Hugo C. [3 ]
AlQahtani, Salman A. [4 ]
Hassan, Mohammad Mehedi [5 ]
机构
[1] Xiamen Univ Technol, Sch Software Engn, Xiamen, Peoples R China
[2] Xiamen Univ Technol, Sch Comp & Informat Engn, Xiamen, Peoples R China
[3] Univ Porto FEUP, Fac Engn, Dept Mech Engn, Porto, Portugal
[4] King Saud Univ, Coll Comp & Informat Sci, Comp Engn Dept, Riyadh 11543, Saudi Arabia
[5] King Saud Univ, Coll Comp & Informat Sci, Informat Syst Dept, Riyadh 11543, Saudi Arabia
基金
中国博士后科学基金;
关键词
ECG signals; Arrhythmia classification; Feature fusion; 1D-CNN4; NEURAL-NETWORK; INTERFERENCE; DIAGNOSIS; SYSTEM;
D O I
10.1007/s00521-021-06487-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature extraction plays an important role in arrhythmia classification, and successful arrhythmia classification generally depends on ECG feature extraction. This paper proposed a feature extraction method combining traditional approaches and 1D-CNN aiming to find the optimal feature set to improve the accuracy of arrhythmia classification. The proposed method is verified by using the MIT-BIH arrhythmia benchmark database. It is found that the features extracted by 1D-CNN and discrete wavelet transform form the optimal feature set with the average classification accuracy up to 98.35%, which is better than the latest methods.
引用
收藏
页码:16073 / 16087
页数:15
相关论文
共 60 条
[1]   A deep convolutional neural network model to classify heartbeats [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad ;
Gertych, Arkadiusz ;
Tan, Ru San .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 :389-396
[2]  
Andreoli A., 2010, Wearable and Autonomous Biomedical Devices and Systems for Smart Environment, P369, DOI DOI 10.1007/978-3-642-15687-8
[3]   Removing artifacts from electrocardiographic signals using independent components analysis [J].
Barros, AK ;
Mansour, A ;
Ohnishi, N .
NEUROCOMPUTING, 1998, 22 (1-3) :173-186
[4]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[5]   Medical Diagnosis Using Machine Learning: A Statistical Review [J].
Bhavsar, Kaustubh Arun ;
Singla, Jimmy ;
Al-Otaibi, Yasser D. ;
Song, Oh-Young ;
Bin Zikriya, Yousaf ;
Bashir, Ali Kashif .
CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (01) :107-125
[6]   Deep learning for intelligent IoT: Opportunities, challenges and solutions [J].
Bin Zikria, Yousaf ;
Afzal, Muhammad Khalil ;
Kim, Sung Won ;
Marin, Andrea ;
Guizani, Mohsen .
COMPUTER COMMUNICATIONS, 2020, 164 :50-53
[7]   Review of Complementary and Alternative Medical Treatment of Arrhythmias [J].
Brenyo, Andrew ;
Aktas, Mehmet K. .
AMERICAN JOURNAL OF CARDIOLOGY, 2014, 113 (05) :897-903
[8]  
Ciresan D.C., 2011, P 22 INT JOINT C ART, DOI DOI 10.5591/978-1-57735-516-8/IJCAI11-210
[9]  
Das MK, 2013, 2013 IEEE 1ST INTERNATIONAL CONFERENCE ON CONDITION ASSESSMENT TECHNIQUES IN ELECTRICAL SYSTEMS (CATCON), P353, DOI 10.1109/CATCON.2013.6737526
[10]   Automatic classification of heartbeats using ECG morphology and heartbeat interval features [J].
de Chazal, P ;
O'Dwyer, M ;
Reilly, RB .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (07) :1196-1206