A Novel Low Loss Sawtooth Slow Wave Structure for 0.66-THz Traveling Wave Tubes

被引:4
作者
Zhang, Yinyu [1 ]
Zheng, Yuan [1 ]
Dong, Yang [1 ]
Guo, Jingyu [1 ]
Duan, Jingrui [1 ]
Wang, Yuxin [1 ]
Lu, Zhigang [1 ]
Zhang, Ping [1 ]
Wang, Shaomeng [1 ]
Gong, Yubin [1 ]
机构
[1] Univ Elect Sci & Technol China UESTC, Sch Elect Sci & Engn, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Low loss; slow wave structure (SWS); terahertz (THz) source; traveling wave tube (TWT); VACUUM ELECTRON DEVICE; APPLIED PHYSICS; TERAHERTZ; PROGRESS;
D O I
10.1109/TPS.2024.3370256
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A novel low loss sawtooth (ST) slow wave structure (SWS) is proposed as a solution to the challenges presented by terahertz (THz) traveling wave tubes (TWTs), known for their machining difficulty and insertion loss. Compared with folded waveguide (FWG) SWS, the ST SWS is easier to machine and takes a 44.96% lower insertion loss. Driven by a pencil beam (PB) gun of 19.0 kV, 15.0 mA, and an input power of 1 mW, the comparative output performance of the ST circuit and FWG circuit is evaluated using the particle-in-cell (PIC) method. The ST circuit shows enhancement in both the maximum output power and 3-dB bandwidth, which improved by 13.21% and 42.86%, respectively.
引用
收藏
页码:1062 / 1068
页数:7
相关论文
共 27 条
  • [1] Basten M. A., 2012, 2012 IEEE Thirteenth International Vacuum Electronics Conference and the ninth International Vacuum Electron Sources Conference (IVEC-IVESC 2012), P39, DOI 10.1109/IVEC.2012.6262066
  • [2] Billa LR, 2017, IEEE INT VAC ELECT C
  • [3] Billa LR, 2016, PROCEEDINGS OF 2016 IEEE 9TH UK-EUROPE-CHINA WORKSHOP ON MILLIMETRE WAVES AND TERAHERTZ TECHNOLOGIES (UCMMT), P235, DOI 10.1109/UCMMT.2016.7874022
  • [4] Vacuum Electronic High Power Terahertz Sources
    Booske, John H.
    Dobbs, Richard J.
    Joye, Colin D.
    Kory, Carol L.
    Neil, George R.
    Park, Gun-Sik
    Park, Jaehun
    Temkin, Richard J.
    [J]. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2011, 1 (01) : 54 - 75
  • [5] The research progress of vacuum electron device in terahertz band
    Chang, Shao-Jie
    Wu, Zhen-Hua
    Huang, Jie
    Zhao, Tao
    Liu, Di-Wei
    Hu, Min
    Wei, Yan-Yu
    Gong, Yu-Bin
    Liu, Sheng-Gang
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2022, 41 (01) : 85 - 102
  • [6] Nanoscale Surface Roughness Effects on THz Vacuum Electron Device Performance
    Gamzina, Diana
    Li, Hanyan
    Himes, Logan
    Barchfeld, Robert
    Popovic, Branko
    Pan, Pan
    Letizia, Rosa
    Mineo, Mauro
    Feng, Jinjun
    Paoloni, Claudio
    Luhmann, Neville C., Jr.
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2016, 15 (01) : 85 - 93
  • [7] Terahertz Conductivity of Copper Surfaces
    Kirley, M. P.
    Booske, John H.
    [J]. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2015, 5 (06) : 1012 - 1020
  • [8] Terahertz Wave Enhances Permeability of the Voltage-Gated Calcium Channel
    Li, Yangmei
    Chang, Chao
    Zhu, Zhi
    Sun, Lan
    Fan, Chunhai
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (11) : 4311 - 4318
  • [9] Millimeter wave traveling wave tubes for the 21st Century
    Paoloni, Claudio
    Gamzina, Diana
    Letizia, Rosa
    Zheng, Yuan
    Luhmann Jr., Neville C.
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2021, 35 (05) : 567 - 603
  • [10] Qin Shuo, 2023, 2023 24th International Vacuum Electronics Conference (IVEC), P1, DOI 10.1109/IVEC56627.2023.10157826