Parametric Prediction of FDM Process to Improve Tensile Properties Using Taguchi Method and Artificial Neural Network

被引:2
|
作者
Ali, Dina [1 ]
Huayier, Abdullah F. [1 ]
Enzi, Abass [1 ]
机构
[1] Univ Technol Baghdad, Dept Prod Engn & Met, Baghdad, Iraq
关键词
additive manufacturing; 3D printing; printing parameters; artificial neural network; fused deposition modeling; STRENGTH;
D O I
10.12913/22998624/169572
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fused deposition modeling (FDM) is a popular 3D printing technique that creates parts by heating, extruding, and depositing filaments made of thermoplastic polymers. The processing parameters have a considerable impact on the characteristics of FDM-produced parts. This paper focuses on the parametric prediction of the FDM process to predict ultimate tensile strength and determine a mathematical model using the Taguchi method and Artificial Neural Network. Five manufacturing variables, such as layer thickness, print speed, orientation angle, number of parameters, and nozzle temperature at five levels, are used to study the mechanical properties of PLA material to manufacture specimens using FDM 3D printer. The specimens are produced for tensile tests in accordance with ASTM-D638 standards, and the process parameters are established using the Taguchi orthogonal array experimental design technique. The results proved that the printing process parameters significantly impacted the tensile strength by changing the tensile test values between 37 MPa and 53 MPa. Also, the neural network predicted the tensile strength values, and the maximum error was equal to 8.91%, while the mathematical model had a maximum error equal to 19.96%.
引用
收藏
页码:130 / 138
页数:9
相关论文
共 50 条
  • [41] Combining the Taguchi method with an artificial neural network to construct a prediction model for near-field photolithography experiments
    Lin, Z-C
    Yang, C-B
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2010, 224 (C10) : 2223 - 2233
  • [42] Fatigue Life Prediction of Aluminum Using Artificial Neural Network
    Jimenez-Martinez, Moises
    Alfaro-Ponce, Mariel
    ENGINEERING LETTERS, 2021, 29 (02) : 704 - 709
  • [43] Prediction of plywood bonding quality using an artificial neural network
    Garcia Esteban, Luis
    Garcia Fernandez, Francisco
    de Palacios, Paloma
    HOLZFORSCHUNG, 2011, 65 (02) : 209 - 214
  • [44] Concrete Compressive Strength Prediction Using Rebound Method with Artificial Neural Network
    Liu, Jianming
    Li, Huijian
    He, Changjun
    MANUFACTURING SCIENCE AND MATERIALS ENGINEERING, PTS 1 AND 2, 2012, 443-444 : 34 - 39
  • [45] Prediction of rubberized mortar properties using artificial neural network and fuzzy logic
    Topcu, Ilker Bekir
    Saridemir, Mustafa
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 199 (1-3) : 108 - 118
  • [46] Prediction of Engineered Cementitious Composite Material Properties Using Artificial Neural Network
    Nateghi-A, F.
    Ahmadi, M. H.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2019, 32 (11): : 1534 - 1542
  • [47] Prediction of rubberized concrete properties using artificial neural network and fuzzy logic
    Topcu, Ilker Bekir
    Saridemir, Mustafa
    CONSTRUCTION AND BUILDING MATERIALS, 2008, 22 (04) : 532 - 540
  • [48] Prediction of cold flow properties of biodiesel fuel using artificial neural network
    Al-Shanableh, Filiz
    Evcil, Ali
    Savas, Mahmut Ahsen
    12TH INTERNATIONAL CONFERENCE ON APPLICATION OF FUZZY SYSTEMS AND SOFT COMPUTING, ICAFS 2016, 2016, 102 : 273 - 280
  • [49] Prediction of mechanical properties of A357 alloy using artificial neural network
    Yang, Xia-wei
    Zhu, Jing-chuan
    Nong, Zhi-sheng
    He, Dong
    Lai, Zhong-hong
    Liu, Ying
    Liu, Fa-wei
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2013, 23 (03) : 788 - 795
  • [50] Combining the Taguchi method with artificial neural network to construct a prediction model of a CO2 laser cutting experiment
    Yang, Ching-Been
    Deng, Chyn-Shu
    Chiang, Hsiu-Lu
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2012, 59 (9-12) : 1103 - 1111