Parametric Prediction of FDM Process to Improve Tensile Properties Using Taguchi Method and Artificial Neural Network

被引:2
|
作者
Ali, Dina [1 ]
Huayier, Abdullah F. [1 ]
Enzi, Abass [1 ]
机构
[1] Univ Technol Baghdad, Dept Prod Engn & Met, Baghdad, Iraq
关键词
additive manufacturing; 3D printing; printing parameters; artificial neural network; fused deposition modeling; STRENGTH;
D O I
10.12913/22998624/169572
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fused deposition modeling (FDM) is a popular 3D printing technique that creates parts by heating, extruding, and depositing filaments made of thermoplastic polymers. The processing parameters have a considerable impact on the characteristics of FDM-produced parts. This paper focuses on the parametric prediction of the FDM process to predict ultimate tensile strength and determine a mathematical model using the Taguchi method and Artificial Neural Network. Five manufacturing variables, such as layer thickness, print speed, orientation angle, number of parameters, and nozzle temperature at five levels, are used to study the mechanical properties of PLA material to manufacture specimens using FDM 3D printer. The specimens are produced for tensile tests in accordance with ASTM-D638 standards, and the process parameters are established using the Taguchi orthogonal array experimental design technique. The results proved that the printing process parameters significantly impacted the tensile strength by changing the tensile test values between 37 MPa and 53 MPa. Also, the neural network predicted the tensile strength values, and the maximum error was equal to 8.91%, while the mathematical model had a maximum error equal to 19.96%.
引用
收藏
页码:130 / 138
页数:9
相关论文
共 50 条
  • [31] Prediction of selected biodiesel fuel properties using artificial neural network
    Solomon O. Giwa
    Sunday O. Adekomaya
    Kayode O. Adama
    Moruf O. Mukaila
    Frontiers in Energy, 2015, 9 : 433 - 445
  • [32] Prediction of selected biodiesel fuel properties using artificial neural network
    Giwa, Solomon O.
    Adekomaya, Sunday O.
    Adama, Kayode O.
    Mukaila, Moruf O.
    FRONTIERS IN ENERGY, 2015, 9 (04) : 433 - 445
  • [33] Modeling and Simulation of Apple Drying, Using Artificial Neural Network and Neuro -Taguchi's Method
    Mousavi, M.
    Javan, S.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2009, 11 (05): : 559 - 571
  • [34] Accelerated life estimation for LCD modules using artificial neural network based on Taguchi method
    Chen, Yung-Chung
    Chen, Yi-Chun
    Chen, Chien-Ming
    INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING-THEORY APPLICATIONS AND PRACTICE, 2007, 14 (03): : 289 - 297
  • [35] Artificial neural network for the prediction of the fresh properties of cementitious materials
    Charrier, Malo
    Ouellet-Plamondon, Claudiane M.
    CEMENT AND CONCRETE RESEARCH, 2022, 156
  • [36] Prediction of the physical properties of barium titanates using an artificial neural network
    Al-Jabar, Ahmed Jaafar Abed
    Al-Dujaili, Mohammed Assi Ahmed
    Al-Hydary, Imad Ali Disher
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2017, 123 (04):
  • [37] Prediction of wind properties in urban environments using artificial neural network
    Kapil Varshney
    Kamal Poddar
    Theoretical and Applied Climatology, 2012, 107 : 579 - 590
  • [38] Prediction of the physical properties of barium titanates using an artificial neural network
    Ahmed Jaafar Abed Al-Jabar
    Mohammed Assi Ahmed Al-dujaili
    Imad Ali Disher Al-hydary
    Applied Physics A, 2017, 123
  • [39] Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network
    Wu, Sheng Ju
    Shiah, Sheau-Wen
    Yu, Wei-Lung
    RENEWABLE ENERGY, 2009, 34 (01) : 135 - 144
  • [40] Surface Roughness Prediction for CNC Milling Process using Artificial Neural Network
    Rashid, M. F. F. Ab.
    Lani, M. R. Abdul
    WORLD CONGRESS ON ENGINEERING, WCE 2010, VOL III, 2010, : 2219 - 2224