An Overview on Over-the-Air Federated Edge Learning

被引:14
作者
Cao, Xiaowen [1 ,2 ]
Lyu, Zhonghao [2 ,3 ]
Zhu, Guangxu [4 ]
Xu, Jie [2 ,3 ]
Xu, Lexi [5 ]
Cui, Shuguang [2 ,3 ,6 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen, Peoples R China
[2] Chinese Univ Hong Kong Shenzhen, FNii, Shenzhen, Peoples R China
[3] Chinese Univ Hong Kong Shenzhen, SSE, Shenzhen, Peoples R China
[4] Shenzhen Res Inst Big Data, Shenzhen, Peoples R China
[5] China Unicom Res Inst, Beijing, Peoples R China
[6] Peng Cheng Lab, Shenzhen, Peoples R China
基金
国家重点研发计划;
关键词
Atmospheric modeling; Servers; Data models; Training; Performance evaluation; Artificial intelligence; OFDM;
D O I
10.1109/MWC.005.2300016
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Over-the-air federated edge learning (Air-FEEL) has emerged as a promising solution to support edge artificial intelligence (AI) in future, beyond 5G (B5G) and 6G networks. In Air-FEEL, distributed edge devices use their local data to collaboratively train AI models while preserving data privacy, in which the over-the-air model/gradient aggregation is exploited for enhancing the learning efficiency. This article provides an overview of the Air-FEEL state-of-the-art. First, we present the basic principle of Air-FEEL, and introduce the technical challenges for Air-FEEL design due to the over-the-air aggregation errors as well as the resource and data heterogeneities at edge devices. Next, we present the fundamental performance metrics for Air-FEEL, and review resource management solutions and design considerations for enhancing the Air-FEEL performance. Finally, several interesting research directions are pointed out to motivate future work.
引用
收藏
页码:202 / 210
页数:9
相关论文
共 15 条
[1]   Machine Learning at the Wireless Edge: Distributed Stochastic Gradient Descent Over-the-Air [J].
Amiri, Mohammad Mohammadi ;
Gunduz, Deniz .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 (68) :2155-2169
[2]   Transmission Power Control for Over-the-Air Federated Averaging at Network Edge [J].
Cao, Xiaowen ;
Zhu, Guangxu ;
Xu, Jie ;
Cui, Shuguang .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (05) :1571-1586
[3]   Optimized Power Control Design for Over-the-Air Federated Edge Learning [J].
Cao, Xiaowen ;
Zhu, Guangxu ;
Xu, Jie ;
Wang, Zhiqin ;
Cui, Shuguang .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (01) :342-358
[4]   Distributed Learning in Wireless Networks: Recent Progress and Future Challenges [J].
Chen, Mingzhe ;
Gunduz, Deniz ;
Huang, Kaibin ;
Saad, Walid ;
Bennis, Mehdi ;
Feljan, Aneta Vulgarakis ;
Poor, H. Vincent .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) :3579-3605
[5]   Privacy for Free: Wireless Federated Learning via Uncoded Transmission With Adaptive Power Control [J].
Liu, Dongzhu ;
Simeone, Osvaldo .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (01) :170-185
[6]  
McMahan HB, 2017, PR MACH LEARN RES, V54, P1273
[7]  
Ni, 2022, IEEE INTERNET THINGS, P1
[8]  
Sifaou H., 2021, ARXIV
[9]   Dynamic Scheduling for Over-the-Air Federated Edge Learning With Energy Constraints [J].
Sun, Yuxuan ;
Zhou, Sheng ;
Niu, Zhisheng ;
Gunduz, Deniz .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (01) :227-242
[10]   Federated Learning Over Wireless Device-to-Device Networks: Algorithms and Convergence Analysis [J].
Xing, Hong ;
Simeone, Osvaldo ;
Bi, Suzhi .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) :3723-3741