Giant magneto-optical Schafer-Hubert effect in the two-dimensional van der Waals antiferromagnets MPS3 (M = Mn, Fe, Ni)

被引:7
|
作者
Yang, Ping [1 ,2 ]
Feng, Wanxiang [1 ,2 ]
Liu, Gui-Bin [1 ,2 ]
Guo, Guang-Yu [3 ,4 ,5 ]
Yao, Yugui [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Phys, Key Lab Adv Optoelect Quantum Architecture & Meas, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Phys, Beijing Key Lab Nanophoton & Ultrafine Optoelect, Beijing 100081, Peoples R China
[3] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[4] Natl Taiwan Univ, Ctr Theoret Phys, Taipei 10617, Taiwan
[5] Natl Ctr Theoret Sci, Phys Div, Taipei 10617, Taiwan
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
2ND-HARMONIC GENERATION; FERROMAGNETISM; TRANSITION; SURFACE;
D O I
10.1103/PhysRevB.107.214437
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The recent discovery of long-range magnetic order in atomically thin films has triggered particular interest in two-dimensional (2D) van der Waals (vdW) magnetic materials. In this paper, we perform a systematic theoretical study of the magneto-optical Schafer-Hubert effect (MOSHE) in 2D vdW antiferromagnetic MPS3 (M = Mn, Fe, Ni) with multifold intralayer and interlayer magnetic orders. The formula for evaluating the MOSHE in 2D magnets is derived by considering the influence of a nonmagnetic substrate. The MOSHE of monolayer and bilayer MPS3 is very large (>2 degrees), originating from the strong anisotropy of in-plane optical conductivity. The Schafer-Hubert rotation angles are surprisingly insensitive to the orientations of the Neel vector, while the Schafer-Hubert ellipticities are identified to be a good criterion to distinguish different interlayer magnetic orders. Our work establishes a theoretical framework for exploring novel 2D vdW magnets and facilitates the promising applications of the 2D MPS3 family in antiferromagnetic nanophotonic devices.
引用
收藏
页数:9
相关论文
共 48 条
  • [1] Layer-dependent Raman spectroscopy study on two-dimensional van der Waals antiferromagnetic semiconductor MPS3 (M=Fe, Mn)
    Yan, Sihan
    Wang, Cheng
    Xie, Qiyun
    Chen, Limin
    Wang, Wei
    Ai, Xiaoqian
    SOLID STATE COMMUNICATIONS, 2022, 348-349
  • [2] Highly sensitive spin-flop transition in antiferromagnetic van der Waals material MPS3 (M = Ni and Mn)
    Basnet, Rabindra
    Wegner, Aaron
    Pandey, Krishna
    Storment, Stephen
    Hu, Jin
    PHYSICAL REVIEW MATERIALS, 2021, 5 (06)
  • [3] Giant Magneto-Optical Effect in van der Waals Room-Temperature Ferromagnet Fe3GaTe2
    Zhang, Xiaomin
    Wang, Jian
    Zhu, Wenkai
    Zhang, Jiaqian
    Li, Weihao
    Zhang, Jing
    Wang, Kaiyou
    CHINESE PHYSICS LETTERS, 2024, 41 (06)
  • [4] Effect of biquadratic magnetic exchange interaction in the 2D antiferromagnets MPS3 (M= Mn, Fe, Co, Ni)
    Amirabbasi, M.
    Kratzer, P.
    PHYSICAL REVIEW MATERIALS, 2024, 8 (08):
  • [5] Strong magneto-optical effect and anomalous transport in the two-dimensional van der Waals magnets FenGeTe2 (n=3, 4, 5)
    Yang, Xiuxian
    Zhou, Xiaodong
    Feng, Wanxiang
    Yao, Yugui
    PHYSICAL REVIEW B, 2021, 104 (10)
  • [6] Electrically tunable giant Nernst effect in two-dimensional van der Waals heterostructures
    Pasquale, Gabriele
    Sun, Zhe
    Migliato Marega, Guilherme
    Watanabe, Kenji
    Taniguchi, Takashi
    Kis, Andras
    NATURE NANOTECHNOLOGY, 2024, 19 (07) : 941 - 947
  • [7] Large magneto-optical effects in the van der Waals ferrimagnet Mn3Si2Te6
    Yin, Yuling
    Wan, Xiangang
    Tu, Xinhai
    Wang, Di
    PHYSICAL REVIEW B, 2024, 110 (10)
  • [8] OPTICAL-ABSORPTION SPECTRA OF THE LAYERED TRANSITION-METAL THIOPHOSPHATES MPS3 (M = MN, FE, AND NI)
    JOY, PA
    VASUDEVAN, S
    PHYSICAL REVIEW B, 1992, 46 (09): : 5134 - 5141
  • [9] Critical cation-anion radius ratio and two-dimensional antiferromagnetism in van der Waals TMPS3 (TM = Mn, Fe, Ni)
    Petkov, Valeri
    Ren, Yang
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (17)
  • [10] Proximity effect of a two-dimensional van der Waals magnet Fe3GeTe2 on nickel films
    Chen, Qian
    Liang, Jian
    Fang, Bin
    Zhu, Yonghui
    Wang, Jiachen
    Lv, Weiming
    Lv, Wenxing
    Cai, Jialin
    Huang, Zhaocong
    Zhai, Ya
    Zhang, Baoshun
    Zeng, Zhongming
    NANOSCALE, 2021, 13 (35) : 14688 - 14693