Scale-Dependent Drivers of Marine Heatwaves Globally

被引:8
|
作者
Bian, Ce [1 ,2 ]
Jing, Zhao [1 ,2 ,3 ]
Wang, Hong [1 ,2 ,3 ]
Wu, Lixin [1 ,2 ,3 ]
机构
[1] Ocean Univ China, Frontiers Sci Ctr Deep Ocean Multispheres & Earth, Qingdao, Peoples R China
[2] Ocean Univ China, Key Lab Phys Oceanog, Qingdao, Peoples R China
[3] Laoshan Lab, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
marine heatwaves; drivers; spatial scales; WESTERN-AUSTRALIA; IMPACTS; OCEAN; ATLANTIC; FEEDBACK;
D O I
10.1029/2023GL107306
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Marine heatwaves (MHWs) are prolonged extreme warm water events, threatening marine ecosystems. Understanding drivers of MHWs over the global ocean is essential for their forecast. Here, we use an eddy-resolving coupled global climate model with improved realism of MHWs to evaluate the drivers of MHWs at different spatial scales, that is, MHWs defined based on temperature anomalies at different spatial scales. The properties of MHWs are scale-dependent, being generally weaker, less frequent, and longer with increasing spatial scales. The primary driver of MHWs shifts from local oceanic intrinsic advection to atmospheric forcing as their spatial scale becomes larger. The transition spatial scale between the ocean and atmosphere-driven regimes varies geographically, being larger in eddy-rich regions but smaller in gyre interior. This study suggests the complicated dynamics of MHWs at different spatial scales and provides guidance on improving their forecast capacity. Increasing greenhouse gas emission causes ocean warming, triggering frequent extreme warm water events known as marine heatwaves (MHWs). An in-depth knowledge of the drivers of MHWs globally is essential for improving their forecast capacity. In this study, we demonstrate the dominant drivers of MHWs vary with their spatial scales based on a state-of-the-art high-resolution global climate simulation. Smaller-scale MHWs are primarily driven by oceanic processes, whereas atmospheric processes play a dominant role in driving larger-scale MHWs. The transition spatial scale between the ocean and atmosphere-driven regimes is region-dependent. It is generally larger in regions with energetic ocean currents such as the western boundary currents as well as their extension, but smaller in the gyre interior where the ocean is more quiescent. Dominant drivers of Marine heatwaves (MHWs) shift from oceanic to atmospheric processes as their spatial scale increases The transition spatial scale from ocean to atmosphere-driven MHWs varies geographically The transition spatial scale is larger in eddy-rich regions while smaller in gyre interior
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Spatiotemporal Evolution of Marine Heatwaves Globally
    Cannell, H. A.
    Cai, C.
    Hompson, L.
    Hitt, D. B.
    Agne, D. J.
    Bernathey, R. P.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2024, 41 (12) : 1247 - 1263
  • [2] A global assessment of marine heatwaves and their drivers
    Holbrook, Neil J.
    Scannell, Hillary A.
    Sen Gupta, Alexander
    Benthuysen, Jessica A.
    Feng, Ming
    Oliver, Eric C. J.
    Alexander, Lisa, V
    Burrows, Michael T.
    Donat, Markus G.
    Hobday, Alistair J.
    Moore, Pippa J.
    Perkins-Kirkpatrick, Sarah E.
    Smale, Dan A.
    Straub, Sandra C.
    Wernberg, Thomas
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [3] Drivers of Marine Heatwaves in the Arctic Ocean
    Richaud, Benjamin
    Hu, Xianmin
    Darmaraki, Sofia
    Fennel, Katja
    Lu, Youyu
    Oliver, Eric C. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2024, 129 (02)
  • [4] Scale-dependent patterns of intraspecific trait variations in two globally invasive species
    Evangelista, C.
    Olden, J. D.
    Lecerf, A.
    Cucherousset, J.
    OECOLOGIA, 2019, 189 (04) : 1083 - 1094
  • [5] Local Drivers of Marine Heatwaves: A Global Analysis With an Earth System Model
    Vogt, Linus
    Burger, Friedrich A.
    Griffies, Stephen M.
    Frolicher, Thomas L.
    FRONTIERS IN CLIMATE, 2022, 4
  • [6] Drivers of Marine Heatwaves in the Northwest Atlantic: The Role of Air-Sea Interaction During Onset and Decline
    Schlegel, Robert W.
    Oliver, Eric C. J.
    Chen, Ke
    FRONTIERS IN MARINE SCIENCE, 2021, 8
  • [7] Keeping pace with marine heatwaves
    Holbrook, Neil J.
    Sen Gupta, Alex
    Oliver, Eric C. J.
    Hobday, Alistair J.
    Benthuysen, Jessica A.
    Scannell, Hillary A.
    Smale, Dan A.
    Wernberg, Thomas
    NATURE REVIEWS EARTH & ENVIRONMENT, 2020, 1 (09) : 482 - 493
  • [8] Marine Heatwaves
    Oliver, Eric C. J.
    Benthuysen, Jessica A.
    Darmaraki, Sofia
    Donat, Markus G.
    Hobday, Alistair J.
    Holbrook, Neil J.
    Schlegel, Robert W.
    Sen Gupta, Alex
    ANNUAL REVIEW OF MARINE SCIENCE, VOL 13, 2021, 2021, 13 (13): : 313 - 342
  • [9] Scale-Dependent Drivers of Air-Sea CO2 Flux Variability
    Fay, Amanda R.
    Carroll, Dustin
    Mckinley, Galen A.
    Menemenlis, Dimitris
    Zhang, Hong
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (20)
  • [10] Oceanic mesoscale eddies as crucial drivers of global marine heatwaves
    Bian, Ce
    Jing, Zhao
    Wang, Hong
    Wu, Lixin
    Chen, Zhaohui
    Gan, Bolan
    Yang, Haiyuan
    NATURE COMMUNICATIONS, 2023, 14 (01)