Exact Large-Scale Fluctuations of the Phase Field in the Sine-Gordon Model

被引:5
|
作者
Del Vecchio, Giuseppe Del Vecchio [1 ]
Kormos, Marton [2 ,3 ]
Doyon, Benjamin [1 ]
Bastianello, Alvise [4 ,5 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, Muegyet Rkp 3, H-1111 Budapest, Hungary
[3] Budapest Univ Technol & Econ, MTA BME Quantum Dynam & Correlat Res Grp, Muegyet Rkp 3, H-1111 Budapest, Hungary
[4] Tech Univ Munich, TUM Sch Nat Sci, Phys Dept, D-85748 Garching, Germany
[5] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
基金
英国工程与自然科学研究理事会;
关键词
ISING-MODEL; STATISTICAL-MECHANICS; RENORMALIZATION-GROUP; DYNAMICS; SYSTEM; CHAIN;
D O I
10.1103/PhysRevLett.131.263401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the first exact theory and analytical formulas for the large-scale phase fluctuations in the sine-Gordon model, valid in all regimes of the field theory, for arbitrary temperatures and interaction strengths. Our result is based on the ballistic fluctuation theory combined with generalized hydrodynamics, and can be seen as an exact "dressing" of the phenomenological soliton-gas picture first introduced by Sachdev and Young [Phys. Rev. Lett. 78, 2220 (1997)], to the modes of generalized hydrodynamics. The resulting physics of phase fluctuations in the sine-Gordon model is qualitatively different, as the stable quasiparticles of integrability give coherent ballistic propagation instead of diffusive spreading. We provide extensive numerical checks of our analytical predictions within the classical regime of the field theory by using Monte Carlo methods. We discuss how our results are of ready applicability to experiments on tunnel-coupled quasicondensates.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Caustics in the sine-Gordon model from quenches in coupled one-dimensional Bose gases
    Agarwal, Aman
    Kulkarni, Manas
    O'Dell, D. H. J.
    PHYSICAL REVIEW A, 2023, 108 (01)
  • [32] Localized modes in PT-symmetric sine-Gordon couplers with phase shift
    Khan, Wajahat Ali
    Ali, Amir
    Gul, Zamin
    Ahmad, Saeed
    Ullah, Arif
    CHAOS SOLITONS & FRACTALS, 2020, 139
  • [33] Solitons in antiferroelectric liquid crystal and Josephson junction: The double sine-Gordon model
    Saravanan, M.
    Dhamayanthi, S.
    CHINESE JOURNAL OF PHYSICS, 2017, 55 (03) : 886 - 892
  • [34] Collective coordinate variable for soliton-potential system in sine-Gordon model
    Javidan, Kurosh
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (11)
  • [35] The affective factors on the uncertainty in the collisions of the soliton solutions of the double field sine-Gordon system
    Mohammadi, M.
    Riazi, N.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 72 : 176 - 193
  • [36] LATTICE BOLTZMANN MODEL FOR TWO-DIMENSIONAL GENERALIZED SINE-GORDON EQUATION
    Duan, Yali
    Kong, Linghua
    Chen, Xianjin
    Guo, Min
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (06): : 1645 - 1663
  • [37] Solitary oscillations and multiple antikink-kink pairs in the double sine-Gordon model
    Simas, Fabiano C.
    Lima, Fred C.
    Nobrega, K. Z.
    Gomes, Adalto R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (12)
  • [38] Berezinskii-Kosterlitz-Thouless transition and criticality of an elliptic deformation of the sine-Gordon model
    Defenu, N.
    Bacso, V
    Marian, I. G.
    Nandori, I
    Trombettoni, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (34)
  • [39] New exact solutions of the (3+1)-dimensional double sine-Gordon equation by two analytical methods
    Manzoor, Zuha
    Iqbal, Muhammad Sajid
    Ashraf, Farrah
    Alroobaea, Roobaea
    Tarar, Muhammad Akhtar
    Inc, Mustafa
    Hussain, Shabbir
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (05)
  • [40] Discrete set of kink velocities in Josephson structures: The nonlocal double sine-Gordon model
    Alfimov, G. L.
    Malishevskii, A. S.
    Medvedeva, E. V.
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 282 : 16 - 26