Exact Large-Scale Fluctuations of the Phase Field in the Sine-Gordon Model

被引:5
|
作者
Del Vecchio, Giuseppe Del Vecchio [1 ]
Kormos, Marton [2 ,3 ]
Doyon, Benjamin [1 ]
Bastianello, Alvise [4 ,5 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, Muegyet Rkp 3, H-1111 Budapest, Hungary
[3] Budapest Univ Technol & Econ, MTA BME Quantum Dynam & Correlat Res Grp, Muegyet Rkp 3, H-1111 Budapest, Hungary
[4] Tech Univ Munich, TUM Sch Nat Sci, Phys Dept, D-85748 Garching, Germany
[5] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
基金
英国工程与自然科学研究理事会;
关键词
ISING-MODEL; STATISTICAL-MECHANICS; RENORMALIZATION-GROUP; DYNAMICS; SYSTEM; CHAIN;
D O I
10.1103/PhysRevLett.131.263401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the first exact theory and analytical formulas for the large-scale phase fluctuations in the sine-Gordon model, valid in all regimes of the field theory, for arbitrary temperatures and interaction strengths. Our result is based on the ballistic fluctuation theory combined with generalized hydrodynamics, and can be seen as an exact "dressing" of the phenomenological soliton-gas picture first introduced by Sachdev and Young [Phys. Rev. Lett. 78, 2220 (1997)], to the modes of generalized hydrodynamics. The resulting physics of phase fluctuations in the sine-Gordon model is qualitatively different, as the stable quasiparticles of integrability give coherent ballistic propagation instead of diffusive spreading. We provide extensive numerical checks of our analytical predictions within the classical regime of the field theory by using Monte Carlo methods. We discuss how our results are of ready applicability to experiments on tunnel-coupled quasicondensates.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] RG study of a non-local sine-Gordon model
    Naón, CM
    Salvay, MJ
    NUCLEAR PHYSICS B, 2003, 663 (03) : 591 - 604
  • [22] Nonequilibrium time evolution and rephasing in the quantum sine-Gordon model
    Horvath, D. X.
    Lovas, I
    Kormos, M.
    Takacs, G.
    Zarand, G.
    PHYSICAL REVIEW A, 2019, 100 (01)
  • [23] Correlation Functions of the Quantum Sine-Gordon Model in and out of Equilibrium
    Kukuljan, I.
    Sotiriadis, S.
    Takacs, G.
    PHYSICAL REVIEW LETTERS, 2018, 121 (11)
  • [24] Super-rough phase of the random-phase sine-Gordon model: Two-loop results
    Ristivojevic, Zoran
    Le Doussal, Pierre
    Wiese, Kay Joerg
    PHYSICAL REVIEW B, 2012, 86 (05)
  • [25] Preparing and Analyzing Solitons in the Sine-Gordon Model with Quantum Gas Microscopes
    Wybo, Elisabeth
    Bastianello, Alvise
    Aidelsburger, Monika
    Bloch, Immanuel
    Knap, Michael
    PRX QUANTUM, 2023, 4 (03):
  • [26] Nonlinear waves of the sine-Gordon equation in the model with three attracting impurities
    Ekomasov, E. G.
    Samsonov, K. Yu
    Gumerov, A. M.
    Kudryavtsev, R., V
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2022, 30 (06): : 749 - 765
  • [27] Collective coordinates theory for discrete soliton ratchets in the sine-Gordon model
    Sanchez-Rey, Bernardo
    Quintero, Niurka R.
    Cuevas-Maraver, Jesus
    Alejo, Miguel A.
    PHYSICAL REVIEW E, 2014, 90 (04):
  • [28] Higher-derivative four-dimensional sine-Gordon model
    Bontorno, Matteo F.
    Angilella, G. G. N.
    Zappala, Dario
    ANNALS OF PHYSICS, 2024, 471
  • [29] Quantum quench dynamics of the sine-Gordon model in some solvable limits
    Iucci, A.
    Cazalilla, M. A.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [30] Arbitrarily large numbers of kink internal modes in inhomogeneous sine-Gordon equations
    Gonzalez, J. A.
    Bellorin, A.
    Garcia-Nustes, M. A.
    Guerrero, L. E.
    Jimenez, S.
    Vazquez, L.
    PHYSICS LETTERS A, 2017, 381 (24) : 1995 - 1998