Enhancing Red Palm Weevil Detection Using Bird Swarm Algorithm With Deep Learning Model

被引:0
作者
Arasi, Munya A. [1 ]
Almuqren, Latifah [2 ]
Issaoui, Imene [3 ]
Almalki, Nabil Sharaf [4 ]
Mahmud, Ahmed [5 ]
Assiri, Mohammed [6 ]
机构
[1] King Khalid Univ, Coll Sci & Arts Rijal Almaa, Dept Comp Sci, Abha 61421, Saudi Arabia
[2] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Syst, POB 84428, Riyadh 11671, Saudi Arabia
[3] Qassim Univ, Appl Coll, Unit Sci Res, Buraydah, Saudi Arabia
[4] King Saud Univ, Coll Educ, Dept Special Educ, Riyadh 12372, Saudi Arabia
[5] Future Univ Egypt, Res Ctr, New Cairo 11835, Egypt
[6] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities, Dept Comp Sci, Al Kharj 16273, Saudi Arabia
关键词
Feature extraction; Classification algorithms; Convolutional neural networks; Tuning; Diseases; Computational modeling; Insects; Computer vision; machine learning; pest detection; agriculture; hyperparameter tuning; crop productivity;
D O I
10.1109/ACCESS.2023.3348412
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent times, mostly in the Middle East region, Red Palm Weevils (RPW) are one of the most dangerous pests of palm trees worldwide. The RPW causes significant harm to several palm species. The existing detection method includes the symptoms detection of RPW through sound or visual assessment and chemical recognition of volatile signatures created by diseased palm trees. However, an effective recognition of RPW disease at earlier stages is assumed that a very complex problem for cultivating date palms. This is another reason why the use of state-of-the-art technologies is supported in the avoidance of the spread of the RPW on palm trees. Several researchers are working on determining the correct process for the localization, classification, and detection of RPW pests. Therefore, this paper presents an intelligent Red Palm Weevil Detection using the Bird Swarm Algorithm with Deep Learning (IRPWD-BSADL) model. The major aim of the IRPWD-BSADL technique focuses on the identification and classification of RPW using CV and DL models. Primarily, the bilateral filtering (BF) approach can be utilized to remove the noise that exists in the images. In the presented IRPWD-BSADL technique, an improved ShuffleNet model can be applied for feature extraction purposes. To enhance the recognition results, the IRPWD-BSADL technique makes use of BSA for the hyperparameter tuning process. For RPW detection and classification, an extreme gradient boosting (XGBoost) classifier can be used. The simulation analysis of the IRPWD-BSADL method can be tested on the RPW dataset. An extensive comparison study stated the improved performance of the IRPWD-BSADL algorithm on the RPW detection method.
引用
收藏
页码:1542 / 1551
页数:10
相关论文
共 50 条
  • [41] Intrusion Detection in IoT Networks Using Deep Learning Algorithm
    Susilo, Bambang
    Sari, Riri Fitri
    INFORMATION, 2020, 11 (05)
  • [42] A general deep learning model for bird detection in high-resolution airborne imagery
    Weinstein, Ben G.
    Garner, Lindsey
    Saccomanno, Vienna R.
    Steinkraus, Ashley
    Ortega, Andrew
    Brush, Kristen
    Yenni, Glenda
    McKellar, Ann E.
    Converse, Rowan
    Lippitt, Christopher D.
    Wegmann, Alex
    Holmes, Nick D.
    Edney, Alice J.
    Hart, Tom
    Jessopp, Mark J.
    Clarke, Rohan H.
    Marchowski, Dominik
    Senyondo, Henry
    Dotson, Ryan
    White, Ethan P.
    Frederick, Peter
    Ernest, S. K. Morgan
    ECOLOGICAL APPLICATIONS, 2022, 32 (08)
  • [43] An Automated Vision-Based Deep Learning Model for Efficient Detection of Android Malware Attacks
    Almomani, Iman
    Alkhayer, Aala
    El-Shafai, Walid
    IEEE ACCESS, 2022, 10 : 2700 - 2720
  • [44] Automatic detection of migrating soaring bird flocks using weather radars by deep learning
    Schekler, Inbal
    Nave, Tamir
    Shimshoni, Ilan
    Sapir, Nir
    METHODS IN ECOLOGY AND EVOLUTION, 2023, 14 (08): : 2084 - 2094
  • [45] Fraud Detection using Machine Learning and Deep Learning
    Raghavan, Pradheepan
    El Gayar, Neamat
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND KNOWLEDGE ECONOMY (ICCIKE' 2019), 2019, : 335 - 340
  • [46] Contactless Palm Vein Authentication Using Deep Learning With Bayesian Optimization
    Obayya, Marwa Ismael
    El-Ghandour, Mohammed
    Alrowais, Fadwa
    IEEE ACCESS, 2021, 9 : 1940 - 1957
  • [47] Design and development of a deep learning model for brain abnormality detection using MRI
    Potadar, Mahesh P.
    Holambe, Raghunath S.
    Chile, Rajan H.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2024, 12 (01)
  • [48] GANs-Based Data Augmentation for Citrus Disease Severity Detection Using Deep Learning
    Zeng, Qingmao
    Ma, Xinhui
    Cheng, Baoping
    Zhou, Erxun
    Pang, Wei
    IEEE ACCESS, 2020, 8 : 172882 - 172891
  • [49] Enhancing Phishing Detection: A Machine Learning Approach With Feature Selection and Deep Learning Models
    Nayak, Ganesh S.
    Muniyal, Balachandra
    Belavagi, Manjula C.
    IEEE ACCESS, 2025, 13 : 33308 - 33320
  • [50] An Adaptive Sleep Apnea Detection Model Using Multi Cascaded Atrous-Based Deep Learning Schemes With Hybrid Artificial Humming Bird Pity Beetle Algorithm
    Aswath, Selvaraj
    Sundaram, Valarmathi Ravichandran Shanmuga
    Mahdal, Miroslav
    IEEE ACCESS, 2023, 11 : 113114 - 113133