Experimental and numerical investigation on low-velocity impact response of sandwich structure with functionally graded core

被引:9
作者
Kumar, T. S. Mohan [1 ]
Joladarashi, Sharnappa [1 ]
Kulkarni, S. M. [1 ]
Doddamani, Saleemsab [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Mech Engn, Mangalore, India
关键词
finite element analysis; functionally graded materials; low-velocity impact; sandwich structure; FIBER COMPOSITES; GLASS-FIBER; BEHAVIOR; RUBBER; DAMAGE; PERFORMANCE; STRENGTH; COMPRESSION; RESISTANCE; THICKNESS;
D O I
10.1002/pc.27986
中图分类号
TB33 [复合材料];
学科分类号
摘要
The present research investigates optimizing the impact resistance of functionally graded sandwich structures using experimental and numerical approaches. The low-velocity impact (LVI) responses of functionally graded sandwich composite (FGSC) with different configurations with skin material jute/rubber/jute (JRJ) and core material having epoxy and sea sand by volume fraction of sea sand at 0%, 10%, 20%, and 30%. Sandwich structures were impacted with LVI (5.89, 10.92, and 15.18 m/s), with the impactor dropped from heights of 0.5, 1, and 1.5 m with precompressed spring loads. FGSC samples are considered a deformable body, and the impactor is modeled as a rigid body using commercially accessible dynamic explicit software. The burn-out test and weight method were used to test the core's gradience; both methods' results substantially matched, and the variance in gradation could be observed. The proposed sandwich structure characteristics are examined by energy absorption, peak force, energy loss percentage, and coefficient of restitution. Results showed that SC30S provides greater energy absorption and superior damage resistance when tested on LVI. To evaluate the accuracy of experimental findings in predicting the indentation behavior of the sandwich structure, the finite element analysis was used to compare with the experimental results. According to the examination of these proposed FGSC overall performance, they could potentially be employed as sacrificial materials for LVI applications like claddings to shield major structural components. The systematic approach used in this work serves as a standard for choosing and using FGSC effectively for LVI applications.HighlightsLow-velocity impact behavior of sandwich structures was investigated.Combining flexible skin and epoxy core enhances energy absorption.Based on impact energy levels, impact damage areas were determined.Examined sandwich structure advantages in structural and aerospace uses.In terms of time and cost, the numerical analysis method would be useful. Low-Velocity Impact Behavior in Sandwich Structures with Functionally Graded Cores.image
引用
收藏
页码:3225 / 3242
页数:18
相关论文
共 50 条
  • [31] The numerical and experimental investigation on low-velocity impact response of composite panels: Effect of fabric architecture
    Miao, Hairong
    Wu, Zhenyu
    Ying, Zhiping
    Hu, Xudong
    COMPOSITE STRUCTURES, 2019, 227
  • [32] Low-velocity impact response of thermoplastic composite sandwich panels with the intersected corrugated core
    Pan, Xin
    Chen, Liming
    Deng, Jianqiang
    Zhao, Wanqi
    Jin, Shuai
    Du, Bing
    Chen, Yong
    Li, Weiguo
    Liu, Tao
    COMPOSITE STRUCTURES, 2023, 324
  • [33] An experimental investigation on the low-velocity impact performance of the CFRP filled with nanoclay
    Fakhreddini-Najafabadi, Sajjad
    Torabi, Mahdi
    Taheri-Behrooz, Fathollah
    AEROSPACE SCIENCE AND TECHNOLOGY, 2021, 116 (116)
  • [34] Experimental and numerical study on the low-velocity impact response of thermoplastic composite corrugated sandwich panels
    Pan, Xin
    Chen, Liming
    Liu, Houchang
    Qin, Weiming
    Du, Bing
    Li, Weiguo
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2022, 24 (04) : 1828 - 1846
  • [35] Nonlinear dynamic response of functionally graded materials circular plates subject to low-velocity impact
    Dai, Hong-Liang
    Guo, Zhi-Yang
    Yang, Lei
    JOURNAL OF COMPOSITE MATERIALS, 2013, 47 (22) : 2797 - 2807
  • [36] Experimental and Numerical Study of Composite Honeycomb Sandwich Structures Under Low-Velocity Impact
    Deng, Yunfei
    Hu, Xiaoyu
    Niu, Yijie
    Zheng, Yimei
    Wei, Gang
    APPLIED COMPOSITE MATERIALS, 2024, 31 (02) : 535 - 559
  • [37] An experimental investigation on low-velocity impact response and compression after impact of a stochastic, discontinuous prepreg tape composite
    Kravchenko, Sergii G.
    Volle, Chris
    Kravchenko, Oleksandr G.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 149
  • [38] Low-velocity impact response of composite sandwich structures: Modelling and experiment
    Chen, Yuan
    Hou, Shujuan
    Fu, Kunkun
    Han, Xu
    Ye, Lin
    COMPOSITE STRUCTURES, 2017, 168 : 322 - 334
  • [39] Low-velocity impact resistance of ATH/epoxy core sandwich composite panels: Experimental and numerical analyses
    Morada, G.
    Ouadday, R.
    Vadean, A.
    Boukhili, R.
    COMPOSITES PART B-ENGINEERING, 2017, 114 : 418 - 431
  • [40] 3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact
    Etemadi, E.
    Khatibi, A. Afaghi
    Takaffoli, M.
    COMPOSITE STRUCTURES, 2009, 89 (01) : 28 - 34