Fractional Complex Euler-Lagrange Equation: Nonconservative Systems

被引:0
作者
Toma, Antonela [1 ]
Postavaru, Octavian [1 ]
机构
[1] Univ Politehn Bucuresti, Ctr Res & Training Innovat Tech Appl Math Engn, Splaiul Independentei 313, Bucharest 060042, Romania
关键词
complex fractional integral; complex Hamiltonian dynamic; symmetries;
D O I
10.3390/fractalfract7110799
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Classical forbidden processes paved the way for the description of mechanical systems with the help of complex Hamiltonians. Fractional integrals of complex order appear as a natural generalization of those of real order. We propose the complex fractional Euler-Lagrange equation, obtained by finding the stationary values associated with the fractional integral of complex order. The complex Hamiltonian obtained from the Lagrangian is suitable for describing nonconservative systems. We conclude by presenting the conserved quantities attached to Noether symmetries corresponding to complex systems. We illustrate the theory with the aid of the damped oscillatory system.
引用
收藏
页数:11
相关论文
共 19 条
  • [1] Abramowitz M., 1972, HDB MATH FUNCTIONS
  • [2] Andriambololona Tokiniaina., 2012, International Journal of Latest Research in Science and Technology, V1, P317
  • [3] [Anonymous], 1990, Int. J. Math. Math. Sci, DOI DOI 10.1155/S0161171290000709
  • [4] Atangana A., 2018, Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology
  • [5] Atangana A., 2016, DERIVATIVE NEW PARAM, DOI DOI 10.1016/B978-0-08-100644-3.00002-7
  • [6] Making sense of non-Hermitian Hamiltonians
    Bender, Carl M.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) : 947 - 1018
  • [7] Bhalekar S., 2011, Ph.D. Thesis
  • [8] Application of the Caputo-Fabrizio derivative without singular kernel to fractional Schrodinger equations
    Bouzenna, Fatma El-Ghenbazia
    Meftah, Mohammed Tayeb
    Difallah, Mosbah
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [9] Caputo M., 2015, PROGR FRACT DIFFER A, V1, P73, DOI DOI 10.12785/PFDA/010201
  • [10] Child M S., 1991, Semiclassical Mechanics with Molecular Applications