Fast charging of commercial lithium-ion battery without lithium plating

被引:10
作者
Thapa, Arun [1 ]
Hedding, Noah [1 ]
Gao, Hongwei [1 ]
机构
[1] Montana State Univ, Elect & Comp Engn Dept, Bozeman, MT 59717 USA
关键词
Lithium-ion battery (LIB); Electrochemical impedance spectroscopy (EIS); Fast charging; Lithium plating; Three-electrode lithium-ion cell; IMPEDANCE SPECTROSCOPY; ELECTROCHEMICAL IMPEDANCE; CYCLE LIFE; ELECTRODE; CELL; QUANTIFICATION; PERFORMANCE; PROTOCOL; CARBON; STATE;
D O I
10.1016/j.est.2023.109524
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Rapid charging of lithium-ion batteries (LIBs) enables the devices or systems powered by the batteries to provide services at faster rates or higher frequencies. However, fast charging of LIBs can cause lithium plating, resulting in rapid capacity degradation and even thermal runaway or fire in the batteries. Fast charging and lithium plating in a LIB are anode-centric events. Therefore, an anode-centric electrochemical model is critical for deriving a fast charging protocol for LIBs. In this work, we developed an electric circuit model for the negative electrode using tests conducted on laboratory three-electrode lithium-ion cells, used the model to estimate the fast charging current, and compared the fast charging current derived using the model to the fast charging current obtained from measurement. The fast charging current obtained using the model agrees well with the measured fast charging current. Furthermore, we implemented this fast charging protocol on commercial 18650 LIBs for 350 cycles using custom-built charging hardware and software and achieved an 80 % state of charge in 29 min with acceptable temperature rise. The cell aging analysis revealed no significant capacity degradation nor lithium plating on the anode surface, as the protocol explicitly imposes control to protect the battery from lithium plating.
引用
收藏
页数:11
相关论文
共 54 条
[1]   The Impact of Pulse Charging Parameters on the Life Cycle of Lithium-Ion Polymer Batteries [J].
Amanor-Boadu, J. M. ;
Guiseppi-Elie, A. ;
Sanchez-Sinencio, E. .
ENERGIES, 2018, 11 (08)
[2]   Fast charging technique for high power lithium iron phosphate batteries: A cycle life analysis [J].
Ansean, D. ;
Gonzalez, M. ;
Viera, J. C. ;
Garcia, V. M. ;
Blanco, C. ;
Valledor, M. .
JOURNAL OF POWER SOURCES, 2013, 239 :9-15
[3]   Lithium Plating on Graphite Negative Electrodes: Innovative Qualitative and Quantitative Investigation Methods [J].
Birkenmaier, Claudia ;
Bitzer, Bernhard ;
Harzheim, Matthias ;
Hintennach, Andreas ;
Schleid, Thomas .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) :A2646-A2650
[4]   A new method for detecting lithium plating by measuring the cell thickness [J].
Bitzer, Bernhard ;
Gruhle, Andreas .
JOURNAL OF POWER SOURCES, 2014, 262 :297-302
[5]   Impedance spectroscopy, strength and limitations [J].
Boukamp, BA .
TECHNISCHES MESSEN, 2004, 71 (09) :454-459
[6]   Myth and Reality about the Origin of Inductive Loops in Impedance Spectra of Lithium-Ion Electrodes - A Critical Experimental Approach [J].
Brandstaetter, Harald ;
Hanzu, Ilie ;
Wilkening, Martin .
ELECTROCHIMICA ACTA, 2016, 207 :218-223
[7]   A Comparison of Lithium-Ion Cell Performance across Three Different Cell Formats [J].
Bridgewater, Grace ;
Capener, Matthew J. ;
Brandon, James ;
Lain, Michael J. ;
Copley, Mark ;
Kendrick, Emma .
BATTERIES-BASEL, 2021, 7 (02)
[8]   In-Situ Detection of Lithium Plating Using High Precision Coulometry [J].
Burns, J. C. ;
Stevens, D. A. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) :A959-A964
[9]   Rapid Lithium Diffusion in Order@Disorder Pathways for Fast-Charging Graphite Anodes [J].
Cai, Wenlong ;
Yan, Chong ;
Yao, Yu-Xing ;
Xu, Lei ;
Xu, Rui ;
Jiang, Li-Li ;
Huang, Jia-Qi ;
Zhang, Qiang .
SMALL STRUCTURES, 2020, 1 (01)
[10]   On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries [J].
Camean, Ignacio ;
Lavela, Pedro ;
Tirado, Jose L. ;
Garcia, A. B. .
FUEL, 2010, 89 (05) :986-991