China's lithium supply chains: Network evolution and resilience assessment

被引:10
|
作者
Jin, Pengfei [1 ]
Wang, Saige [1 ]
Meng, Zheng [2 ]
Chen, Bin [1 ,3 ]
机构
[1] Beijing Normal Univ, Sch Environm, State Key Joint Lab Environm Simulat Pollut Contro, Beijing 100875, Peoples R China
[2] China Univ Min & Technol Beijing, Sch Management, Beijing 100083, Peoples R China
[3] Beijing Normal Univ, State Key Joint Lab Environm Simulat & Pollut Cont, 19 Xinjiekouwai St, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Lithium resources; Supply chain network; Material flow analysis; Complex network analysis; Resilience assessment; MATERIAL FLOW-ANALYSIS; COMPLEX NETWORK; COBALT; TRANSPORTATION; SUSTAINABILITY; STABILITY; DYNAMICS; SYSTEM;
D O I
10.1016/j.resourpol.2023.104339
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As the world's largest consumer of lithium resources, China faces a substantial demand-supply gap and challenges in securing its lithium supply chain. This study aims to examine the evolution of China's lithium supply chain networks from 2017 to 2021 and employs an attack model to reveal network resilience. A lithium supply chain network is constructed across the entire industry, offering a novel perspective for examining the resilience of lithium resource trade networks. Simulated disturbances are executed via attack models, analysing not only trade nodes but also specific trade relationships while differentiating between import and export subnetworks, thus providing an in-depth examination of structural evolution and resilience characteristics. Our findings highlight the rapid decrease in total lithium throughflows and stable network efficiency from 2017 to 2021. A decline is also observed regarding the network's resilience. Among the different forms of simulated disruptions, node attacks exert the most substantial impact on resilience. The effects of node and edge attacks are notably less severe in China's export subnetwork than in its import subnetwork. In the import subnetwork, the influence of Asian and European nodes diminishes, while South America and Oceania show an increasing influence trend. For exports, the Asian node remains influential, followed by Europe, with Eastern Europe surpassing Western Europe. Upon closer examination of specific products' trade impacts under edge attacks, the results indicate that most trade relationships have minimal impacts on network resilience. There is a persistent increase in the influence of key upstream products in the import sector. Similarly, the influence of key downstream products in the export sector is also on the rise, underscoring China's global leadership in both mid-and downstream products and illustrating its expanding production capacity. The structural changes of complex networks and simultaneous targeted attacks provide new insights for enhancing resilience given the different disruptions of nodes and edges, and outline important policy implications for China's lithium supply security.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Resilience assessment of the aircraft manufacturing core products supply chain: the international trade network perspective
    Zeng, Lanyan
    Chen, Hongzhuan
    Chen, Mingchih
    Zhao, Xufeng
    ANNALS OF OPERATIONS RESEARCH, 2024,
  • [42] Resilience and agility in sustainable supply chains: A relational and dynamic capabilities view
    Ul Akram, Manzoor
    Islam, Nazrul
    Chauhan, Chetna
    Yaqub, Muhammad Zafar
    JOURNAL OF BUSINESS RESEARCH, 2024, 183
  • [43] Exploring the enablers for building resilience in solar photovoltaic Energy supply chains
    Erol, Ismail
    Peker, Iskender
    Benli, Tolga
    Ar, Ilker Murat
    Searcy, Cory
    OPERATIONS MANAGEMENT RESEARCH, 2024, 17 (03) : 1100 - 1125
  • [44] Resilience and Sustainability in Supply Chains: A Systematic Literature Review and a Research Agenda
    Maure, Lissette Concepcion
    Tamas, Peter
    Skapinyecz, Robert
    ADVANCES IN DIGITAL LOGISTICS, LOGISTICS AND SUSTAINABILITY, CECOL 2024, 2024, : 1 - 14
  • [45] Resilience and Digitalization in Short Food Supply Chains: A Case Study Approach
    Michel-Villarreal, Rosario
    Vilalta-Perdomo, Eliseo Luis
    Canavari, Maurizio
    Hingley, Martin
    SUSTAINABILITY, 2021, 13 (11)
  • [46] The role of Big Data in explaining disaster resilience in supply chains for sustainability
    Papadopoulos, Thanos
    Gunasekaran, Angappa
    Dubey, Rameshwar
    Altay, Nezih
    Childe, Stephen J.
    Fosso-Wamba, Samuel
    JOURNAL OF CLEANER PRODUCTION, 2017, 142 : 1108 - 1118
  • [47] A systematic assessment method of supply resilience for natural gas supply systems
    Li, Xueyi
    Su, Huai
    Zhang, Jinjun
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 182 : 207 - 215
  • [48] Survivability, resilience and sustainability of supply chains: The COVID-19 pandemic
    El Korchi, Akram
    JOURNAL OF CLEANER PRODUCTION, 2022, 377
  • [49] International spillover effects in the EU's textile supply chains: A global SDG assessment
    Malik, Arunima
    Lafortune, Guillaume
    Carter, Sarah
    Li, Mengyu
    Lenzen, Manfred
    Kroll, Christian
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 295
  • [50] Analyzing the Resilience of Complex Supply Network Topologies Against Random and Targeted Disruptions
    Zhao, Kang
    Kumar, Akhil
    Harrison, Terry P.
    Yen, John
    IEEE SYSTEMS JOURNAL, 2011, 5 (01): : 28 - 39