An approach for a polychromatic generalized Lorenz-Mie theory

被引:2
|
作者
Ambrosio, Leonardo A. [1 ]
de Sarro, Jhonas O. [1 ]
Gouesbet, Gerard [2 ,3 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, 400 Trabalhador Sao Carlense Ave, BR-13566590 Sao Carlos, SP, Brazil
[2] Normandie Univ, CORIA UMR 6614, CNRS, Campus Univ Madrillet, F-76800 St Etienne Rouvray, France
[3] INSA Rouen, Campus Univ Madrillet, F-76800 St Etienne Rouvray, France
来源
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER | 2024年 / 312卷
基金
瑞典研究理事会; 巴西圣保罗研究基金会;
关键词
Generalized Lorenz-Mie theory; Light scattering; Polychromatic light; GAUSSIAN-BEAM; SPHERICAL-PARTICLE; LIGHT-SCATTERING; PLANE-WAVE; RADIATION; COEFFICIENTS; FORMULATION; PULSES; FIELDS; AXIS;
D O I
10.1016/j.jqsrt.2023.108824
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work a polychromatic version of the generalized Lorenz-Mie theory stricto sensu (GLMT) is derived. In this new formalism, arbitrary time-dependent fields are expanded into partial waves using Bromwich scalar potentials and, instead of the usual expansion coefficients - the beam shape coefficients (BSCs) - found in the monochromatic GLMT, now one finds field shape spectra (FSSs) which are intrinsically frequency-dependent. Expressions for the incident, scattered and internal fields are presented, and it is shown how physical quantities defined and expressed in the monochromatic GLMT in terms of the BSCs are modified and redefined in terms of the FSSs in polychromatic light scattering problems, like scattered intensities and phase angles, absorption, extinction and scattering cross-sections, and radiation pressure cross-sections.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] The generalized Lorenz-Mie theory and its identification with the dipole theory of forces for particles with electric and magnetic properties
    Ambrosio, Leonardo A.
    de Angelis, Vinicius S.
    Gouesbet, Gerard
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 281
  • [22] Generalized Lorenz-Mie theory and simulation software for structured light scattering by particles
    Cheng, Ming Jian
    Cao, Yuan Cong
    Ren, Kuan Fang
    Zhang, Huan
    Guo, Li Xin
    FRONTIERS IN PHYSICS, 2024, 12
  • [23] Shaped beam scattering by an aggregate of particles using generalized Lorenz-Mie theory
    Briard, Paul
    Wang, Jia jie
    Han, Yi Ping
    OPTICS COMMUNICATIONS, 2016, 365 : 186 - 193
  • [24] Second modified localized approximation for use in generalized Lorenz-Mie theory and other theories revisited
    Gouesbet, Gerard
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2013, 30 (04) : 560 - 564
  • [25] Analytical description of on-axis zero-order continuous frozen waves in the generalized Lorenz-Mie theory
    Ambrosio, Leonardo Andre
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2023, 296
  • [26] Symmetry relations in the generalized Lorenz-Mie theory for lossless negative refractive index media
    Ambrosio, Leonardo Andre
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2016, 180 : 147 - 153
  • [27] Comparative numerical analysis between the multipole expansion of optical force up to quadrupole terms and the generalized Lorenz-Mie theory
    De Angelis, V. S.
    Ambrosio, L. A.
    Gouesbet, G.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2021, 38 (08) : 2353 - 2361
  • [28] Generalized Lorenz-Mie theory of nonlinear optical trapping of core/shell hybrid nanoparticles
    Yadav, Sumit
    Devi, Anita
    De, Arijit K.
    COMPLEX LIGHT AND OPTICAL FORCES XVI, 2022, 12017
  • [29] Comparison of stresses on homogeneous spheroids in the optical stretcher computed with geometrical optics and generalized Lorenz-Mie theory
    Boyde, Lars
    Ekpenyong, Andrew
    Whyte, Graeme
    Guck, Jochen
    APPLIED OPTICS, 2012, 51 (33) : 7934 - 7944
  • [30] A scientific story of generalized Lorenz-Mie theories with epistemological remarks
    Gouesbet, G.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2013, 126 : 7 - 15