An approach for a polychromatic generalized Lorenz-Mie theory

被引:2
|
作者
Ambrosio, Leonardo A. [1 ]
de Sarro, Jhonas O. [1 ]
Gouesbet, Gerard [2 ,3 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, 400 Trabalhador Sao Carlense Ave, BR-13566590 Sao Carlos, SP, Brazil
[2] Normandie Univ, CORIA UMR 6614, CNRS, Campus Univ Madrillet, F-76800 St Etienne Rouvray, France
[3] INSA Rouen, Campus Univ Madrillet, F-76800 St Etienne Rouvray, France
来源
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER | 2024年 / 312卷
基金
瑞典研究理事会; 巴西圣保罗研究基金会;
关键词
Generalized Lorenz-Mie theory; Light scattering; Polychromatic light; GAUSSIAN-BEAM; SPHERICAL-PARTICLE; LIGHT-SCATTERING; PLANE-WAVE; RADIATION; COEFFICIENTS; FORMULATION; PULSES; FIELDS; AXIS;
D O I
10.1016/j.jqsrt.2023.108824
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work a polychromatic version of the generalized Lorenz-Mie theory stricto sensu (GLMT) is derived. In this new formalism, arbitrary time-dependent fields are expanded into partial waves using Bromwich scalar potentials and, instead of the usual expansion coefficients - the beam shape coefficients (BSCs) - found in the monochromatic GLMT, now one finds field shape spectra (FSSs) which are intrinsically frequency-dependent. Expressions for the incident, scattered and internal fields are presented, and it is shown how physical quantities defined and expressed in the monochromatic GLMT in terms of the BSCs are modified and redefined in terms of the FSSs in polychromatic light scattering problems, like scattered intensities and phase angles, absorption, extinction and scattering cross-sections, and radiation pressure cross-sections.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] An approach for a polychromatic generalized Lorenz-Mie theory (vol 312, 108824, 2024)
    Ambrosio, Leonardo A.
    Sarro, Jhonas. O. de
    Gouesbet, Gerard
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2024, 319
  • [2] Generalized Lorenz-Mie theory and applications
    Lock, James A.
    Gouesbet, Gerard
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (11): : 800 - 807
  • [3] Towards photophoresis with the generalized Lorenz-Mie theory
    Ambrosio, Leonardo Andre
    Wang, Jiajie
    Gouesbet, Gerard
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 288
  • [4] Calculation of generalized Lorenz-Mie theory based on the localized beam models
    Jia, Xiaowei
    Shen, Jianqi
    Yu, Haitao
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 195 : 44 - 54
  • [5] Generalized Lorenz-Mie theory for assemblies of spheres and aggregates
    Gouesbet, G
    Grehan, G
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 1999, 1 (06): : 706 - 712
  • [6] Generalized Lorenz-Mie theory of photonic wheels
    Orlov, S.
    Berskys, J.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2021, 261
  • [7] Scattering of vector Lommel beam by spherical particle in generalized Lorenz-Mie theory
    Ahmidi, A.
    Chafiq, A.
    Belafhal, A.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (07)
  • [8] Axicon terms associated with gradient optical forces in generalized Lorenz-Mie theory
    Gouesbet, Gerard
    Ambrosio, Leonardo Andre
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 257
  • [9] Expansion of a zero-order Bessel beam in spheroidal coordinates by generalized Lorenz-Mie theory
    Han, L.
    Han, Y. P.
    Cui, Z. W.
    Wang, J. J.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2014, 147 : 279 - 287
  • [10] T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates
    Gouesbet, G.
    OPTICS COMMUNICATIONS, 2010, 283 (04) : 517 - 521