Research into CUP-VISAR velocity reconstruction based on weighted DRUNet and total variation joint optimization

被引:2
作者
Wang, Xi [1 ]
Zhang, Lei [1 ]
Li, Miao [1 ]
Yu, Boshan [1 ]
Guo, Zhaohui [1 ]
Zhao, Xueyin [1 ]
Wang, Feng [2 ]
Li, Yulong [2 ]
Guan, Zanyang [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Int Semicond Coll, Sch Optoelect Engn, Chongqing 400065, Peoples R China
[2] China Acad Engn Phys, Laser Fus Res Ctr, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
Compendex;
D O I
10.1364/OL.498607
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This Letter proposes a CUP-VISAR data reconstruction algorithm for laser-driven inertial confinement fusion (ICF) research. The algorithm combines weighted deep residual U-Net (DRUNet) and joint optimization with total variation (TV) to improve shockwave velocity fringe image reconstruc-tion. The simulation results demonstrate that the proposed algorithm outperforms the ADMM-TV and enhanced 3D total variation (E-3DTV) algorithms, enhancing the quality of the reconstructed images and thereby improving the accu-racy of velocity field calculations. Furthermore, it addresses the challenges of the high compression ratio caused by the diagnostic requirements of the larger number of sampling frames in the CUP-VISAR system and the issues of aliasing within a large encoding aperture. The proposed algorithm demonstrates good robustness to noise, ensuring reliable reconstruction even under Gaussian noise with a relative intensity of 0.05. This algorithm contributes to ICF diagnos-tics in complex environmental conditions and has theoretical significance and practical application value for achieving controlled thermonuclear fusion. (c) 2023 Optica Publishing Group
引用
收藏
页码:5181 / 5184
页数:4
相关论文
共 13 条
  • [1] Probing the seeding of hydrodynamic instabilities from nonuniformities in ablator materials using 2D velocimetry
    Ali, S. J.
    Celliers, P. M.
    Haan, S.
    Boehly, T. R.
    Whiting, N.
    Baxamusa, S. H.
    Reynolds, H.
    Johnson, M. A.
    Hughes, J. D.
    Watson, B.
    Huang, H.
    Biener, J.
    Engelhorn, K.
    Smalyuk, V. A.
    Landen, O. L.
    [J]. PHYSICS OF PLASMAS, 2018, 25 (09)
  • [2] A high-resolution two-dimensional imaging velocimeter
    Celliers, P. M.
    Erskine, D. J.
    Sorce, C. M.
    Braun, D. G.
    Landen, O. L.
    Collins, G. W.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (03)
  • [3] Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility
    Celliers, PM
    Bradley, DK
    Collins, GW
    Hicks, DG
    Boehly, TR
    Armstrong, WJ
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (11) : 4916 - 4929
  • [4] Feng W., 2022, High Power Laser Part. Beams, V34
  • [5] Single-shot compressed ultrafast photography at one hundred billion frames per second
    Gao, Liang
    Liang, Jinyang
    Li, Chiye
    Wang, Lihong V.
    [J]. NATURE, 2014, 516 (7529) : 74 - U159
  • [6] Study on the length of diagnostic time window of CUP-VISAR
    Guan, Zanyang
    Li, Yulong
    Wang, Feng
    Liu, Xiangming
    Peng, Xiaoshi
    Xu, Tao
    Ren, Kuan
    Wei, Huiyue
    Liu, Yonggang
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (12)
  • [7] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [8] Waterloo Exploration Database: New Challenges for Image Quality Assessment Models
    Ma, Kede
    Duanmu, Zhengfang
    Wu, Qingbo
    Wang, Zhou
    Yong, Hongwei
    Li, Hongliang
    Zhang, Lei
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (02) : 1004 - 1016
  • [9] Enhanced 3DTV Regularization and Its Applications on HSI Denoising and Compressed Sensing
    Peng, Jiangjun
    Xie, Qi
    Zhao, Qian
    Wang, Yao
    Yee, Leung
    Meng, Deyu
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7889 - 7903
  • [10] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241