共 50 条
Novel gamma-ray enhanced TiO2 nanoparticles photoanode for efficient photoelectrochemical (PEC) water splitting
被引:12
|作者:
Mohamed, Nurul Aida
[1
]
Kiong, Tiong Sieh
[1
]
Ismail, Aznan Fazli
[2
]
Teridi, Mohd Asri Mat
[3
]
机构:
[1] Univ Tenaga Nas, Inst Sustainable Energy ISE, Kajang 43000, Selangor, Malaysia
[2] Univ Kebangsaan Malaysia, Fac Sci & Technol, Nucl Sci Program, Bangi 43600, Selangor, Malaysia
[3] Univ Kebangsaan Malaysia, Solar Energy Res Inst SERI, Bangi 43600, Selangor, Malaysia
关键词:
Spin coating;
gamma rays irradiation;
Photoelectrochemical (PEC);
Energy;
GRAPHITIC CARBON NITRIDE;
PHOTOCATALYTIC ACTIVITY;
MICROWAVE SYNTHESIS;
NANOWIRE ARRAYS;
IRRADIATION;
PERFORMANCE;
GRAPHENE;
G-C3N4;
OXYGEN;
HETEROJUNCTION;
D O I:
10.1016/j.apsusc.2023.158602
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The photocatalytic activity of TiO2 nanoparticles (TiO(2)NPs) for Hydrogen Evolution Reduction (HER) was significantly enhanced through a multi-step process involving oxygen-doping with gamma-ray irradiation treatment (ranging from 10 kGy to 100 kGy), methanolic dispersion, and post-annealing temperatures. Remarkably, gamma rays induced oxygen-doping, leading to improved electronic properties and chemical bonding, as demonstrated in the XPS section, which ultimately contributed to the exceptional stability of the photoanode. The resulting higher crystallinity and larger crystallite sizes, evident in Raman and XRD spectra, further enhanced the structure of the TiO(2)NPs. Upon gamma irradiation, the deposited TiO(2)NPs exhibited enlargement and agglomeration, which promoted enhanced surface area, catalytic sites, and light absorption when used as a photoanode in PEC cells. The post irradiation conditions caused a reduction in the energy band gap, resulting in a quenching effect from 3.25 eV to 3.18 eV. Intriguingly, PL analysis showed that the radiated photoanode displayed a remarkable reduction in the energetic separation of photo-generated electron-hole pairs, accompanied by a simultaneous decrease in carrier recombination. Overall, the 70 kGy TiO2NP photoanode demonstrated exceptional photostability and significantly outperformed the pure TiO2NP counterpart by increasing the photocurrent density by over 300%, reaching approximately 100.12 mu A cm(-2) at 1.23 vs. RHE, compared to 36.42 mu A cm(-2) for the pure TiO2NP. These findings underscore the significance of gamma irradiation in the field of nanomaterials and its promising potential for photoelectrochemical (PEC) solar water splitting applications.
引用
收藏
页数:20
相关论文