Multibranches of acoustic emission as identifier for deformation mechanisms in additively manufactured 316L stainless steel

被引:9
作者
Chen, Yan [1 ]
Gou, Boyuan [1 ]
Xu, Xin [1 ]
Ding, Xiangdong [1 ]
Sun, Jun [1 ]
Salje, Ekhard K. H. [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”; 中国国家自然科学基金;
关键词
Multibranching; Acoustic emission; Deformation mechanism; Avalanche behavior; Additive manufacturing; TWINNING-INDUCED PLASTICITY; STACKING-FAULT ENERGIES; STRAIN-RATE SENSITIVITY; MARTENSITIC-TRANSFORMATION; DAMAGE MECHANISMS; HIGH-STRENGTH; EVOLUTION; DUCTILITY; BEHAVIOR;
D O I
10.1016/j.addma.2023.103819
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The multiple collapse mechanisms of complex materials produced by additive manufacturing (AM) were identified by measurements of the acoustic emission (AE) of the samples under tension. A perfect correlation between AE avalanches and deformation mechanisms is shown to hold in the extremely complex AM metallic materials such as 'as-built' and 'stress-relieved' AM 316L stainless steel (SS). The main criterion is that multibranches of the energy-amplitude scaling in AE proves the coexistence of several deformation mechanisms. The as-built AM 316L SS shows three branches in the energy-amplitude scaling of AE signals, which originate from dislocation movements, twinning-detwinning processes and stress-induced martensitic transformations. After stressrelieving annealing at 600 degrees C for 1 h, two branches remain visible with the dominant deformation mechanisms of dislocation movement and twinning-detwinning. The energy exponent of dislocation avalanches is epsilon = 1.6, which is not affected by the heat treatment. The twinning-detwinning exponent increases from 1.8 to 2.0 after annealing. The avalanche behavior of the martensitic transformation shows power laws with energy exponents near epsilon = 1.65 in stress-induced martensite in as-built AM 316L SS and epsilon = 1.8 for strain-induced martensite in stress-relieved AM 316L SS. This multibranching phenomenon can, thus, be used to identify the mechanisms underlying the deformation of AM-alloys and facilitates online monitoring of deformation processes.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel
    Trelewicz, Jason R.
    Halada, Gary P.
    Donaldson, Olivia K.
    Manogharan, Guha
    JOM, 2016, 68 (03) : 850 - 859
  • [32] Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L
    Bertsch, K. M.
    de Bellefon, G. Meric
    Kuehl, B.
    Thoma, D. J.
    ACTA MATERIALIA, 2020, 199 (199) : 19 - 33
  • [33] High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained
    Shamsujjoha, Md.
    Agnew, Sean R.
    Fitz-Gerald, James M.
    Moore, William R.
    Newman, Tabitha A.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (07): : 3011 - 3027
  • [34] Dislocation microstructure and its influence on corrosion behavior in laser additively manufactured 316L stainless steel
    Sprouster, David J.
    Cunningham, W. Streit
    Halada, Gary P.
    Yan, Hanfei
    Pattammattel, Ajith
    Huang, Xiaojing
    Olds, Daniel
    Tilton, Maryam
    Chu, Yong S.
    Dooryhee, Eric
    Manogharan, Guha P.
    Trelewicz, Jason R.
    ADDITIVE MANUFACTURING, 2021, 47
  • [35] Machining and deformation response of wrought and additively manufactured 316L stainless steel under cryogenic cooling and dry condition
    Kitay, Ozhan
    Kaynak, Yusuf
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2025, 137 (3-4) : 1791 - 1809
  • [36] Role of Microstructure on Tension-Compression Asymmetry in Additively Manufactured Stainless Steel 316L
    Kumar, Deepak
    Gupta, Sagar
    Aditya, Y. N.
    Jhavar, Suyog
    Prashanth, K. G.
    Suwas, Satyam
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2025, : 1620 - 1640
  • [37] Machine-to-machine variability of roughness and corrosion in additively manufactured 316L stainless steel
    Clark, C. L.
    Karasz, E. K.
    Melia, M.
    Hooks, D. E.
    Hackenberg, R.
    Colon-Mercado, H.
    Ganesan, P.
    Renner, P.
    Cho, S.
    Wu, M.
    Qiu, S. R.
    Dwyer, J.
    Rueger, Z.
    Gorey, T. J.
    Koehn, Z.
    Stull, J. A.
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 106 : 380 - 392
  • [38] Element-resolved electrochemical analysis of the passivity of additively manufactured stainless steel 316L
    Choudhary, S.
    Cruz, V.
    Pandey, A.
    Thomas, S.
    Birbilis, N.
    CORROSION SCIENCE, 2021, 189
  • [39] Enhancing corrosion resistance of additively manufactured 316L stainless steel by fabricating pillar arrays
    Liu, Qian
    Lu, Jiajun
    Luo, Zairan
    Yi, Jiang
    He, Minglin
    Zhao, Yonghua
    Wang, Shuai
    MATERIALS & DESIGN, 2023, 230
  • [40] Simultaneously Improving the Strength and Plasticity of Additively Manufactured 316L Stainless Steel by Adding Aluminum
    Tian, Hongsheng
    Li, Bochuan
    Yu, Mingxiong
    Huang, Sen
    Mao, Lizhong
    Li, Huaiyuan
    Wang, Kai
    Zhou, Zihao
    Zhu, Guo
    Xu, Kang
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (07)