Bifurcation analysis of a tuberculosis progression model for drug target identification

被引:0
|
作者
Flores-Garza, Eliezer [1 ]
Hernandez-Pando, Rogelio [2 ]
Garcia-Zarate, Ibrahim [3 ]
Aguirre, Pablo [4 ]
Dominguez-Huttinger, Elisa [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Biomed, Dept Biol Mol & Biotecnol, Mexico City 04510, Mexico
[2] Inst Nacl Ciencias Med & Nutr Salvador Zubiran, Dept Patol, Secc Patol Expt, Vasco de Quiroga 15,Belisario Dominguez Secc 16, Mexico City 14080, Mexico
[3] Univ Nacl Autonoma Mexico, Fac Ciencias, Ciudad Univ, Mexico City 04510, Mexico
[4] Univ Tecn Federico Santa Maria, Dept Matemat, Casilla 110-5, Valparaiso, Chile
关键词
MYCOBACTERIUM-TUBERCULOSIS; DISEASE; MECHANISMS; MACROPHAGE; RESOLUTION; STRAINS; BIOLOGY; CELLS;
D O I
10.1038/s41598-023-44569-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tuberculosis (TB) is a major cause of morbidity and mortality worldwide. The emergence and rapid spread of drug-resistant M. tuberculosis strains urge us to develop novel treatments. Experimental trials are constrained by laboratory capacity, insufficient funds, low number of laboratory animals and obsolete technology. Systems-level approaches to quantitatively study TB can overcome these limitations. Previously, we proposed a mathematical model describing the key regulatory mechanisms underlying the pathological progression of TB. Here, we systematically explore the effect of parameter variations on disease outcome. We find five bifurcation parameters that steer the clinical outcome of TB: number of bacteria phagocytosed per macrophage, macrophages death, macrophage killing by bacteria, macrophage recruitment, and phagocytosis of bacteria. The corresponding bifurcation diagrams show all-or-nothing dose-response curves with parameter regions mapping onto bacterial clearance, persistent infection, or history-dependent clearance or infection. Importantly, the pathogenic stage strongly affects the sensitivity of the host to these parameter variations. We identify parameter values corresponding to a latent-infection model of TB, where disease progression occurs significantly slower than in progressive TB. Two-dimensional bifurcation analyses uncovered synergistic parameter pairs that could act as efficient compound therapeutic approaches. Through bifurcation analysis, we reveal how modulation of specific regulatory mechanisms could steer the clinical outcome of TB.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Target identification by image analysis
    Fetz, V.
    Prochnow, H.
    Broenstrup, M.
    Sasse, F.
    NATURAL PRODUCT REPORTS, 2016, 33 (05) : 655 - 667
  • [22] Analysis on bifurcation solutions of an atherosclerosis model
    Wu, Di
    Yang, Wenbin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 39 : 396 - 410
  • [23] A multidrug efflux protein in Mycobacterium tuberculosis; tap as a potential drug target for drug repurposing
    Dwivedi, Manish
    Mukhopadhyay, Sutanu
    Yadav, Shalini
    Dubey, Kshatresh Dutta
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [25] Leveraging Chemotype-Specific Resistance for Drug Target Identification and Chemical Biology
    Kapoor, Tarun M.
    Miller, Rand M.
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2017, 38 (12) : 1100 - 1109
  • [26] Raman spectroscopy experimental spectrum analysis for identification in Mycobacterium tuberculosis strains with different drug resistance
    Zyubin, Andrey
    Lavrova, Anastasia
    Postnicov, Eugenie
    Dogonadze, Marine
    Demishkevich, Elizaveta
    Kundalevich, Anna
    Samusev, Ilia
    OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS XI, 2021, 11900
  • [27] Tuberculosis drug discovery: Progression and future interventions in the wake of emerging resistance
    Perveen, Summaya
    Kumari, Diksha
    Singh, Kuljit
    Sharma, Rashmi
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2022, 229
  • [28] Moxifloxacin Replacement in Contemporary Tuberculosis Drug Regimens Is Ineffective against Persistent Mycobacterium tuberculosis in the Cornell Mouse Model
    Liu, Yingjun
    Pertinez, Henry
    Davies, Geraint R.
    Gillespie, Stephen H.
    Coates, Anthony R.
    Hua, Yanmin
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2018, 62 (07)
  • [29] Identification of Probable Early-Onset Biomarkers for Tuberculosis Disease Progression
    Sutherland, Jayne S.
    Hill, Philip C.
    Adetifa, Ifedayo M.
    de Jong, Bouke C.
    Donkor, Simon
    Joosten, Simone A.
    Opmeer, Lizet
    Haks, Marielle C.
    Ottenhoff, Tom H. M.
    Adegbola, Richard A.
    Ota, Martin O. C.
    PLOS ONE, 2011, 6 (09):
  • [30] Large-scale genomic analysis of Mycobacterium tuberculosis reveals extent of target and compensatory mutations linked to multi-drug resistant tuberculosis
    Napier, Gary
    Campino, Susana
    Phelan, Jody E.
    Clark, Taane G.
    SCIENTIFIC REPORTS, 2023, 13 (01):