Bifurcation analysis of a tuberculosis progression model for drug target identification

被引:0
|
作者
Flores-Garza, Eliezer [1 ]
Hernandez-Pando, Rogelio [2 ]
Garcia-Zarate, Ibrahim [3 ]
Aguirre, Pablo [4 ]
Dominguez-Huttinger, Elisa [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Biomed, Dept Biol Mol & Biotecnol, Mexico City 04510, Mexico
[2] Inst Nacl Ciencias Med & Nutr Salvador Zubiran, Dept Patol, Secc Patol Expt, Vasco de Quiroga 15,Belisario Dominguez Secc 16, Mexico City 14080, Mexico
[3] Univ Nacl Autonoma Mexico, Fac Ciencias, Ciudad Univ, Mexico City 04510, Mexico
[4] Univ Tecn Federico Santa Maria, Dept Matemat, Casilla 110-5, Valparaiso, Chile
关键词
MYCOBACTERIUM-TUBERCULOSIS; DISEASE; MECHANISMS; MACROPHAGE; RESOLUTION; STRAINS; BIOLOGY; CELLS;
D O I
10.1038/s41598-023-44569-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tuberculosis (TB) is a major cause of morbidity and mortality worldwide. The emergence and rapid spread of drug-resistant M. tuberculosis strains urge us to develop novel treatments. Experimental trials are constrained by laboratory capacity, insufficient funds, low number of laboratory animals and obsolete technology. Systems-level approaches to quantitatively study TB can overcome these limitations. Previously, we proposed a mathematical model describing the key regulatory mechanisms underlying the pathological progression of TB. Here, we systematically explore the effect of parameter variations on disease outcome. We find five bifurcation parameters that steer the clinical outcome of TB: number of bacteria phagocytosed per macrophage, macrophages death, macrophage killing by bacteria, macrophage recruitment, and phagocytosis of bacteria. The corresponding bifurcation diagrams show all-or-nothing dose-response curves with parameter regions mapping onto bacterial clearance, persistent infection, or history-dependent clearance or infection. Importantly, the pathogenic stage strongly affects the sensitivity of the host to these parameter variations. We identify parameter values corresponding to a latent-infection model of TB, where disease progression occurs significantly slower than in progressive TB. Two-dimensional bifurcation analyses uncovered synergistic parameter pairs that could act as efficient compound therapeutic approaches. Through bifurcation analysis, we reveal how modulation of specific regulatory mechanisms could steer the clinical outcome of TB.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Target Identification in Anti-Tuberculosis Drug Discovery
    Capela, Rita
    Felix, Rita
    Clariano, Marta
    Nunes, Diogo
    Perry, Maria de Jesus
    Lopes, Francisca
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (13)
  • [2] Mathematical Model of the Immunopathological Progression of Tuberculosis
    Flores-Garza, Eliezer
    Zetter, Mario A.
    Hernandez-Pando, Rogelio
    Dominguez-Huttinger, Elisa
    FRONTIERS IN SYSTEMS BIOLOGY, 2022, 2
  • [3] An investigation of tuberculosis progression revealing the role of macrophages apoptosis via sensitivity and bifurcation analysis
    Zhang, Wenjing
    Ellingson, Leif
    Frascoli, Federico
    Heffernan, Jane
    JOURNAL OF MATHEMATICAL BIOLOGY, 2021, 83 (03)
  • [4] Advances in Key Drug Target Identification and New Drug Development for Tuberculosis
    Mi, Jie
    Gong, Wenping
    Wu, Xueqiong
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [5] Approaches to target identification and validation for tuberculosis drug discovery: A University of Cape Town perspective
    Warner, Digby F.
    Mizrahi, Valerie
    SAMJ SOUTH AFRICAN MEDICAL JOURNAL, 2012, 102 (06): : 457 - 460
  • [6] Crowd Sourcing a New Paradigm for Interactome Driven Drug Target Identification in Mycobacterium tuberculosis
    Vashisht, Rohit
    Mondal, Anupam Kumar
    Jain, Akanksha
    Shah, Anup
    Vishnoi, Priti
    Priyadarshini, Priyanka
    Bhattacharyya, Kausik
    Rohira, Harsha
    Bhat, Ashwini G.
    Passi, Anurag
    Mukherjee, Keya
    Choudhary, Kumari Sonal
    Kumar, Vikas
    Arora, Anshula
    Munusamy, Prabhakaran
    Subramanian, Ahalyaa
    Venkatachalam, Aparna
    Gayathri, S.
    Raj, Sweety
    Chitra, Vijaya
    Verma, Kaveri
    Zaheer, Salman
    Balaganesh, J.
    Gurusamy, Malarvizhi
    Razeeth, Mohammed
    Raja, Ilamathi
    Thandapani, Madhumohan
    Mevada, Vishal
    Soni, Raviraj
    Rana, Shruti
    Ramanna, Girish Muthagadhalli
    Raghavan, Swetha
    Subramanya, Sunil N.
    Kholia, Trupti
    Patel, Rajesh
    Bhavnani, Varsha
    Chiranjeevi, Lakavath
    Sengupta, Soumi
    Singh, Pankaj Kumar
    Atray, Naresh
    Gandhi, Swati
    Avasthi, Tiruvayipati Suma
    Nisthar, Shefin
    Anurag, Meenakshi
    Sharma, Pratibha
    Hasija, Yasha
    Dash, Debasis
    Sharma, Arun
    Scaria, Vinod
    Thomas, Zakir
    PLOS ONE, 2012, 7 (07):
  • [7] MATHEMATICAL ANALYSIS OF A DRUG RESISTANCE IN A TUBERCULOSIS TRANSMISSION MODEL
    Malong, Y.
    Temgoua, A.
    Bowong, S.
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2019,
  • [8] Resistome analysis of Mycobacterium tuberculosis: Identification of aminoglycoside 2 '-N-acetyltransferase (AAC) as co-target for drug desigining
    Joshi, Rakesh S.
    Jamdhade, Mahendra D.
    Sonawane, Mahesh S.
    Giri, Ashok P.
    BIOINFORMATION, 2013, 9 (04) : 174 - 181
  • [9] Identification of putative biomarkers for the serodiagnosis of drug-resistant Mycobacterium tuberculosis
    Zhang, Lu
    Wang, Qingzhong
    Wang, Wenjie
    Liu, Yanyan
    Wang, Jie
    Yue, Jun
    Xu, Ying
    Xu, Wenxi
    Cui, ZhenLing
    Zhang, Xuelian
    Wang, Honghai
    PROTEOME SCIENCE, 2012, 10
  • [10] Future target-based drug discovery for tuberculosis?
    Kana, Bavesh Davandra
    Karakousis, Petros C.
    Parish, Tanya
    Dick, Thomas
    TUBERCULOSIS, 2014, 94 (06) : 551 - 556