Deterministic and stochastic components of atmospheric CO2 inside forest canopies and consequences for predicting carbon and water exchange

被引:2
作者
Munoz, Estefania [1 ]
Sierra, Carlos A. [1 ]
机构
[1] Max Planck Inst Biogeochem, Theoret Ecosyst Ecol Grp, Jena, Germany
关键词
C assimilation; Transpiration; Time series decomposition; ICOS; ATTO; GREENHOUSE-GAS CONCENTRATIONS; BOUNDARY-LAYER; NET ECOSYSTEM; VERTICAL-DISTRIBUTION; STOMATAL CONDUCTANCE; SEASONAL AMPLITUDE; BIOCHEMICAL-MODEL; CYCLE MODELS; LAND-USE; PHOTOSYNTHESIS;
D O I
10.1016/j.agrformet.2023.109624
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Atmospheric CO2 concentrations strongly influence the exchange of energy, water and carbon between the atmosphere and the terrestrial biosphere. The CO2 available to plants can be highly variable given the stochastic nature of the phenomena involved in its dynamics. However, most terrestrial ecosystem models consider CO2 concentration as a quasi-deterministic variable or use measurements taken from heights above the canopy where CO2 is usually well mixed. Therefore, in this study, we aimed to evaluate if a stochastic treatment of CO2 concentrations leads to different predictions of carbon assimilation (An) and transpiration (T) compared to a strictly deterministic approach, as well as the use of CO2 measurements from different heights. To address this goal, we used a set of observations taken in forests from the ICOS network and the ATTO research site. We applied the exponential smoothing method to decompose the time series into their trend, seasonal and stochastic (residual) components. We found that the residual component of CO2 (rCO2) follows a Laplace probability density function and its stochastic magnitude is inversely proportional to the height above the ground. To quantify the degree to which predictions of An and T would be affected by stochastic effects, we ran simulations considering the different components of the time series and Farquhar's and Penman-Monteith's models. We found significant differences in the predictions of An and T for diverse heights, with larger An (T) fluxes closer (farther) to the ground. Still, this effect is mainly due to the deterministic component that increases with decreasing height. The stochastic component tends to reduce (increase) An (T) compared to the deterministic approach. However, the difference between approaches is not large enough to compensate for the deterministic effect, suggesting that there is no merit for the consideration of rCO2 in future simulations as long as measurements taken inside the canopy are used.
引用
收藏
页数:15
相关论文
共 97 条
[1]   TERRESTRIAL HIGHER-PLANT RESPONSE TO INCREASING ATMOSPHERIC [CO2] IN RELATION TO THE GLOBAL CARBON-CYCLE [J].
AMTHOR, JS .
GLOBAL CHANGE BIOLOGY, 1995, 1 (04) :243-274
[2]   Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate [J].
Anagnostou, Eleni ;
John, Eleanor H. ;
Edgar, Kirsty M. ;
Foster, Gavin L. ;
Ridgwell, Andy ;
Inglis, Gordon N. ;
Pancost, Richard D. ;
Lunt, Daniel J. ;
Pearson, Paul N. .
NATURE, 2016, 533 (7603) :380-+
[3]   The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols [J].
Andreae, M. O. ;
Acevedo, O. C. ;
Araujo, A. ;
Artaxo, P. ;
Barbosa, C. G. G. ;
Barbosa, H. M. J. ;
Brito, J. ;
Carbone, S. ;
Chi, X. ;
Cintra, B. B. L. ;
da Silva, N. F. ;
Dias, N. L. ;
Dias-Junior, C. Q. ;
Ditas, F. ;
Ditz, R. ;
Godoi, A. F. L. ;
Godoi, R. H. M. ;
Heimann, M. ;
Hoffmann, T. ;
Kesselmeier, J. ;
Koenemann, T. ;
Krueger, M. L. ;
Lavric, J. V. ;
Manzi, A. O. ;
Lopes, A. P. ;
Martins, D. L. ;
Mikhailov, E. F. ;
Moran-Zuloaga, D. ;
Nelson, B. W. ;
Noelscher, A. C. ;
Nogueira, D. Santos ;
Piedade, M. T. F. ;
Poehlker, C. ;
Poeschl, U. ;
Quesada, C. A. ;
Rizzo, L. V. ;
Ro, C. -U. ;
Ruckteschler, N. ;
Sa, L. D. A. ;
Sa, M. de Oliveira ;
Sales, C. B. ;
dos Santos, R. M. N. ;
Saturno, J. ;
Schoengart, J. ;
Soergel, M. ;
de Souza, C. M. ;
de Souza, R. A. F. ;
Su, H. ;
Targhetta, N. ;
Tota, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (18) :10723-10776
[4]   AN EXPLORATORY ANALYSIS OF LONG-TERM TRENDS IN ATMOSPHERIC CO2 CONCENTRATIONS [J].
ANTONOVSKY, MY ;
BUCHSTABER, VM .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1991, 43 (02) :171-187
[5]   SEASONAL AND DIURNAL-VARIATION IN THE CO2 FLUX AND CO2-WATER FLUX RATIO OF ALFALFA [J].
BALDOCCHI, DD ;
VERMA, SB ;
ROSENBERG, NJ .
AGRICULTURAL METEOROLOGY, 1981, 23 (03) :231-244
[6]  
Ball J.T, 1987, PROGR PHOTOSYNTHESIS, V4, P221, DOI 10.1007/978-94-017-0519-6_48
[7]   Coupled carbon and water fluxes in CAM photosynthesis: modeling quantification of water use efficiency and productivity [J].
Bartlett, Mark S. ;
Vico, Giulia ;
Porporato, Amilcare .
PLANT AND SOIL, 2014, 383 (1-2) :111-138
[8]   Present and future Koppen-Geiger climate classification maps at 1-km resolution [J].
Beck, Hylke E. ;
Zimmermann, Niklaus E. ;
McVicar, Tim R. ;
Vergopolan, Noemi ;
Berg, Alexis ;
Wood, Eric F. .
SCIENTIFIC DATA, 2018, 5
[9]   MEASUREMENT OF CARBON-DIOXIDE COMPENSATION POINTS OF FRESHWATER-ALGAE [J].
BIRMINGHAM, BC ;
COLMAN, B .
PLANT PHYSIOLOGY, 1979, 64 (05) :892-895
[10]   The CO2 record at the Amazon Tall Tower Observatory: A new opportunity to study processes on seasonal and inter-annual scales [J].
Botia, Santiago ;
Komiya, Shujiro ;
Marshall, Julia ;
Koch, Thomas ;
Galkowski, Michal ;
Lavric, Jost ;
Gomes-Alves, Eliane ;
Walter, David ;
Fisch, Gilberto ;
Pinho, Davieliton M. ;
Nelson, Bruce W. ;
Martins, Giordane ;
Luijkx, Ingrid T. ;
Koren, Gerbrand ;
Florentie, Liesbeth ;
de Araujo, Alessandro Carioca ;
Sa, Marta ;
Andreae, Meinrat O. ;
Heimann, Martin ;
Peters, Wouter ;
Gerbig, Christoph .
GLOBAL CHANGE BIOLOGY, 2022, 28 (02) :588-611