Integrative models of histopathological images and multi-omics data predict prognosis in endometrial carcinoma

被引:2
作者
Li, Yueyi [1 ]
Du, Peixin [2 ]
Zeng, Hao [2 ]
Wei, Yuhao [3 ]
Fu, Haoxuan [4 ]
Zhong, Xi [5 ]
Ma, Xuelei [1 ]
机构
[1] Sichuan Univ, West China Hosp, Canc Ctr, Dept Targeting Therapy & Immunol, Chengdu, Sichuan, Peoples R China
[2] Sichuan Univ, West China Hosp, Clin Res Ctr Breast, Lab Integrat Med,State Key Lab Biotherapy, Chengdu, Sichuan, Peoples R China
[3] Sichuan Univ, West China Hosp, West China Sch Med, Chengdu, Sichuan, Peoples R China
[4] Univ Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA USA
[5] Sichuan Univ, West China Hosp, Dept Crit Care Med, Chengdu, Sichuan, Peoples R China
来源
PEERJ | 2023年 / 11卷
关键词
Histopathology; Proteomics; Transcriptomics; Genomics; Endometrial carcinoma; CANCER; MUTATIONS;
D O I
10.7717/peerj.15674
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective: This study aimed to predict the molecular features of endometrial carcinoma (EC) and the overall survival (OS) of EC patients using histopathological imaging.Methods: The patients from The Cancer Genome Atlas (TCGA) were separated into the training set (n = 215) and test set (n = 214) in proportion of 1:1. By analyzing quantitative histological image features and setting up random forest model verified by cross-validation, we constructed prognostic models for OS. The model performance is evaluated with the time-dependent receiver operating characteristics (AUC) over the test set.Results: Prognostic models based on histopathological imaging features (HIF) predicted OS in the test set (5-year AUC = 0.803). The performance of combining histopathology and omics transcends that of genomics, transcriptomics, or proteomics alone. Additionally, multi-dimensional omics data, including HIF, genomics, transcriptomics, and proteomics, attained the largest AUCs of 0.866, 0.869, and 0.856 at years 1, 3, and 5, respectively, showcasing the highest discrepancy in survival (HR = 18.347, 95% CI [11.09-25.65], p < 0.001).Conclusions: The results of this experiment indicated that the complementary features of HIF could improve the prognostic performance of EC patients. Moreover, the integration of HIF and multi-dimensional omics data might ameliorate survival prediction and risk stratification in clinical practice.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis
    Zeeshan Ahmed
    Human Genomics, 14
  • [32] Integrating multi-omics data for crop improvement
    Scossa, Federico
    Alseekh, Saleh
    Fernie, Alisdair R.
    JOURNAL OF PLANT PHYSIOLOGY, 2021, 257
  • [33] Polishing the crystal ball: mining multi-omics data in dermatomyositis
    Castillo, Rochelle L.
    Femia, Alisa N.
    ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (05)
  • [34] Integrative Multi-Omics Data-Driven approach for Metastasis prediction in Cancer
    Fernandez-Lozano, Carlos
    Linares Blanco, Jose
    Gestal, Marcos
    Dorado, Julian
    Pazos, Alejandro
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE, E-LEARNING AND INFORMATION SYSTEMS 2018 (DATA'18), 2018,
  • [35] Multi-Omics Integrative Approach of Extracellular Vesicles: A Future Challenging Milestone
    Shaba, Enxhi
    Vantaggiato, Lorenza
    Governini, Laura
    Haxhiu, Alesandro
    Sebastiani, Guido
    Fignani, Daniela
    Grieco, Giuseppina Emanuela
    Bergantini, Laura
    Bini, Luca
    Landi, Claudia
    PROTEOMES, 2022, 10 (02)
  • [36] Integrative multi-omics analysis of intestinal organoid differentiation
    Lindeboom, Rik G. H.
    van Voorthuijsen, Lisa
    Oost, Koen C.
    Rodriguez-Colman, Maria J.
    Luna-Velez, Maria V.
    Furlan, Cristina
    Baraille, Floriane
    Jansen, Pascal W. T. C.
    Ribeiro, Agnes
    Burgering, Boudewijn M. T.
    Snippert, Hugo J.
    Vermeulen, Michiel
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
  • [37] Integrative analysis of multi-omics data reveals a pseudouridine-related lncRNA signature for prediction of glioma prognosis and chemoradiotherapy sensitivity
    Yang, Yanbo
    Wang, Fei
    Teng, Haiying
    Zhang, Chuanpeng
    Zhang, Yulian
    Chen, Pengyu
    Li, Quan
    Kan, Xiuji
    Chen, Zhouqing
    Wang, Zhong
    Yu, Yanbing
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 166
  • [38] Integrative analysis of immune-related multi-omics profiles identifies distinct prognosis and tumor microenvironment patterns in osteosarcoma
    Shi, Deyao
    Mu, Shidai
    Pu, Feifei
    Liu, Jianxiang
    Zhong, Binlong
    Hu, Binwu
    Ni, Na
    Wang, Hao
    Luu, Hue H.
    Haydon, Rex C.
    Shen, Le
    Zhang, Zhicai
    He, Tong-Chuan
    Shao, Zengwu
    MOLECULAR ONCOLOGY, 2022, 16 (11) : 2174 - 2194
  • [39] Multi-omics data integration: key to thoroughly understanding the immune system
    Jimenez, Cristina
    Hernandez-Sanchez, Maria
    van Dongen, Jacques J. M.
    Diez, Paula
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2023, 11
  • [40] The Strategies and Progression in The Stratification of Hepatocellular Carcinoma Using Multi-omics Data
    Wang, Meng
    Li, Xiao-Qin
    Gao, Bin
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2023, 50 (07) : 1651 - 1663