Integrative models of histopathological images and multi-omics data predict prognosis in endometrial carcinoma

被引:2
|
作者
Li, Yueyi [1 ]
Du, Peixin [2 ]
Zeng, Hao [2 ]
Wei, Yuhao [3 ]
Fu, Haoxuan [4 ]
Zhong, Xi [5 ]
Ma, Xuelei [1 ]
机构
[1] Sichuan Univ, West China Hosp, Canc Ctr, Dept Targeting Therapy & Immunol, Chengdu, Sichuan, Peoples R China
[2] Sichuan Univ, West China Hosp, Clin Res Ctr Breast, Lab Integrat Med,State Key Lab Biotherapy, Chengdu, Sichuan, Peoples R China
[3] Sichuan Univ, West China Hosp, West China Sch Med, Chengdu, Sichuan, Peoples R China
[4] Univ Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA USA
[5] Sichuan Univ, West China Hosp, Dept Crit Care Med, Chengdu, Sichuan, Peoples R China
来源
PEERJ | 2023年 / 11卷
关键词
Histopathology; Proteomics; Transcriptomics; Genomics; Endometrial carcinoma; CANCER; MUTATIONS;
D O I
10.7717/peerj.15674
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective: This study aimed to predict the molecular features of endometrial carcinoma (EC) and the overall survival (OS) of EC patients using histopathological imaging.Methods: The patients from The Cancer Genome Atlas (TCGA) were separated into the training set (n = 215) and test set (n = 214) in proportion of 1:1. By analyzing quantitative histological image features and setting up random forest model verified by cross-validation, we constructed prognostic models for OS. The model performance is evaluated with the time-dependent receiver operating characteristics (AUC) over the test set.Results: Prognostic models based on histopathological imaging features (HIF) predicted OS in the test set (5-year AUC = 0.803). The performance of combining histopathology and omics transcends that of genomics, transcriptomics, or proteomics alone. Additionally, multi-dimensional omics data, including HIF, genomics, transcriptomics, and proteomics, attained the largest AUCs of 0.866, 0.869, and 0.856 at years 1, 3, and 5, respectively, showcasing the highest discrepancy in survival (HR = 18.347, 95% CI [11.09-25.65], p < 0.001).Conclusions: The results of this experiment indicated that the complementary features of HIF could improve the prognostic performance of EC patients. Moreover, the integration of HIF and multi-dimensional omics data might ameliorate survival prediction and risk stratification in clinical practice.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] The diagnosis of inborn errors of metabolism by an integrative "multi-omics" approach: A perspective encompassing genomics, transcriptomics, and proteomics
    Stenton, Sarah L.
    Kremer, Laura S.
    Kopajtich, Robert
    Ludwig, Christina
    Prokisch, Holger
    JOURNAL OF INHERITED METABOLIC DISEASE, 2020, 43 (01) : 25 - 35
  • [22] Integrative Multi-omics Analysis to Characterize Human Brain Ischemia
    Laura Ramiro
    Teresa García-Berrocoso
    Ferran Briansó
    Leire Goicoechea
    Alba Simats
    Víctor Llombart
    Ricardo Gonzalo
    Alexandre Hainard
    Elena Martínez-Saez
    Francesc Canals
    Jean-Charles Sanchez
    Alex Sánchez-Pla
    Joan Montaner
    Molecular Neurobiology, 2021, 58 : 4107 - 4121
  • [23] Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear Cell Renal Cell Carcinoma Prognosis
    Cheng, Jun
    Zhang, Jie
    Han, Yatong
    Wang, Xusheng
    Ye, Xiufen
    Meng, Yuebo
    Parwani, Anil
    Han, Zhi
    Feng, Qianjin
    Huang, Kun
    CANCER RESEARCH, 2017, 77 (21) : E91 - E100
  • [24] Predicting Papillary Renal Cell Carcinoma Prognosis Using Integrative Analysis of Histopathological Images and Genomic Data
    Kee, Shaira L.
    Sy, Michael Aaron G.
    Border, Samuel P.
    Lucarelli, Nicholas J.
    Gupta, Akshita
    Sarder, Pinaki
    Masalunga, Marvin C.
    Tan, Myles Joshua T.
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2023, PT II, 2023, 13920 : 208 - 221
  • [25] Multi-omics Visualization Platform: An extensible Galaxy plug-in for multi-omics data visualization and exploration
    McGowan, Thomas
    Johnson, James E.
    Kumar, Praveen
    Sajulga, Ray
    Mehta, Subina
    Jagtap, Pratik D.
    Griffin, Timothy J.
    GIGASCIENCE, 2020, 9 (04):
  • [26] Progress on genome-scale metabolic models integrated with multi-omics data
    Wang, Xueliang
    Zhang, Yun
    Wen, Tingyi
    CHINESE SCIENCE BULLETIN-CHINESE, 2021, 66 (19): : 2393 - 2404
  • [27] Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis
    Ahmed, Zeeshan
    HUMAN GENOMICS, 2020, 14 (01)
  • [28] Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis
    Menyhart, Otilia
    Gyorffy, Balazs
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 949 - 960
  • [29] Integrative Analysis of Multi-Omics Data Based on Blockwise Sparse Principal Components
    Park, Mira
    Kim, Doyoen
    Moon, Kwanyoung
    Park, Taesung
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (21) : 1 - 17
  • [30] Integrative multi-omics and systems bioinformatics in translational neuroscience: A data mining perspective
    O'Connor, Lance M.
    O'Connor, Blake A.
    Bin Lim, Su
    Zeng, Jialiu
    Lo, Chih Hung
    JOURNAL OF PHARMACEUTICAL ANALYSIS, 2023, 13 (08) : 836 - 850