Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States

被引:22
作者
Ray, Evan L. [1 ]
Brooks, Logan C. [2 ]
Bien, Jacob [3 ]
Biggerstaff, Matthew [4 ]
Bosse, Nikos I. [5 ]
Bracher, Johannes [6 ,7 ]
Cramer, Estee Y. [1 ]
Funk, Sebastian [5 ]
Gerding, Aaron [1 ]
Johansson, Michael A. [4 ]
Rumack, Aaron [2 ]
Wang, Yijin [1 ]
Zorn, Martha [1 ]
Tibshirani, Ryan J. [2 ]
Reich, Nicholas G. [1 ]
机构
[1] Univ Massachusetts Amherst, Sch Publ Hlth & Hlth Sci, Amherst, MA 01003 USA
[2] Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA USA
[3] Univ Southern Calif, Dept Data Sci & Operat, Los Angeles, CA USA
[4] US Ctr Dis Control & Prevent, COVID Response 19, Atlanta, GA USA
[5] London Sch Hyg & Trop Med, London, England
[6] Karlsruhe Inst Technol, Chair Stat Methods & Econometr, Karlsruhe, Germany
[7] Heidelberg Inst Theoret Studies, Computat Stat Grp, Heidelberg, Germany
基金
美国国家卫生研究院;
关键词
Health forecasting; Epidemiology; COVID-19; Ensemble; Quantile combination; INFLUENZA; AGGREGATION; PREDICTION;
D O I
10.1016/j.ijforecast.2022.06.005
中图分类号
F [经济];
学科分类号
02 ;
摘要
The U.S. COVID-19 Forecast Hub aggregates forecasts of the short-term burden of COVID-19 in the United States from many contributing teams. We study methods for building an ensemble that combines forecasts from these teams. These experiments have informed the ensemble methods used by the Hub. To be most useful to policymakers, ensemble forecasts must have stable performance in the presence of two key characteristics of the component forecasts: (1) occasional misalignment with the reported data, and (2) instability in the relative performance of component forecasters over time. Our results indicate that in the presence of these challenges, an untrained and robust approach to ensembling using an equally weighted median of all component forecasts is a good choice to support public health decision-makers. In settings where some contributing forecasters have a stable record of good performance, trained ensembles that give those forecasters higher weight can also be helpful.
引用
收藏
页码:1366 / 1383
页数:18
相关论文
共 55 条
[1]   Monitoring COVID-19 contagion growth [J].
Agosto, Arianna ;
Campmas, Alexandra ;
Giudici, Paolo ;
Renda, Andrea .
STATISTICS IN MEDICINE, 2021, 40 (18) :4150-4160
[2]   A multivariate statistical approach to predict COVID-19 count data with epidemiological interpretation and uncertainty quantification [J].
Bartolucci, Francesco ;
Pennoni, Fulvia ;
Mira, Antonietta .
STATISTICS IN MEDICINE, 2021, 40 (24) :5351-5372
[3]  
Bengtsson H., 2020, matrixStats: Functions that Apply to Rows and Columns of Matrices (and to Vectors)
[4]   A pre-registered short-term forecasting study of COVID-19 in Germany and Poland during the second wave [J].
Bracher, J. ;
Wolffram, D. ;
Deuschel, J. ;
Gorgen, K. ;
Ketterer, J. L. ;
Ullrich, A. ;
Abbott, S. ;
Barbarossa, M., V ;
Bertsimas, D. ;
Bhatia, S. ;
Bodych, M. ;
Bosse, N., I ;
Burgard, J. P. ;
Castro, L. ;
Fairchild, G. ;
Fuhrmann, J. ;
Funk, S. ;
Gogolewski, K. ;
Gu, Q. ;
Heyder, S. ;
Hotz, T. ;
Kheifetz, Y. ;
Kirsten, H. ;
Krueger, T. ;
Krymova, E. ;
Li, M. L. ;
Meinke, J. H. ;
Michaud, I. J. ;
Niedzielewski, K. ;
Ozanski, T. ;
Rakowski, F. ;
Scholz, M. ;
Soni, S. ;
Srivastava, A. ;
Zielinski, J. ;
Zou, D. ;
Gneiting, T. ;
Schienle, M. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[5]   Evaluating epidemic forecasts in an interval format [J].
Bracher, Johannes ;
Ray, Evan L. ;
Gneiting, Tilmann ;
Reich, Nicholas G. .
PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (02)
[6]  
Brooks L C., 2020, Comparing ensemble approaches for short-term probabilistic COVID-19 forecasts in the US
[7]   Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions [J].
Brooks, Logan C. ;
Farrow, David C. ;
Hyun, Sangwon ;
Tibshirani, Ryan J. ;
Rosenfeld, Roni .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (06)
[8]   Quantile Aggregation of Density Forecasts [J].
Busetti, Fabio .
OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2017, 79 (04) :495-512
[9]   The forecast combination puzzle: A simple theoretical explanation [J].
Claeskens, Gerda ;
Magnus, Jan R. ;
Vasnev, Andrey L. ;
Wang, Wendun .
INTERNATIONAL JOURNAL OF FORECASTING, 2016, 32 (03) :754-762
[10]   Probabilistic seasonal dengue forecasting in Vietnam: A modelling study using superensembles [J].
Colon-Gonzalez, Felipe J. ;
Soares Bastos, Leonardo ;
Hofmann, Barbar ;
Hopkin, Alison ;
Harpham, Quillon ;
Crocker, Tom ;
Amato, Rosanna ;
Ferrario, Iacopo ;
Moschini, Francesca ;
James, Samuel ;
Malde, Sajni ;
Ainscoe, Eleanor ;
Sinh Nam, Vu ;
Quang Tan, Dang ;
Duc Khoa, Nguyen ;
Harrison, Mark ;
Tsarouchi, Gina ;
Lumbroso, Darren ;
Brady, Oliver J. ;
Lowe, Rachel .
PLOS MEDICINE, 2021, 18 (03)