Lamellar-structured fibrous silica as a new engineered catalyst for enhancing CO2 methanation

被引:12
作者
Aziz, M. A. [2 ]
Jalil, A. A. [1 ,2 ]
Hamid, M. Y. S. [1 ,2 ]
Hassan, N. S. [2 ]
Khusnun, N. F.
Bahari, M. B. [3 ]
Hatta, A. H. [2 ]
Aziz, M. A. H. [3 ]
Matmin, J. [3 ]
Zein, S. H. [4 ]
Saravanane, Rajendran [5 ]
机构
[1] Inst Future Energy, Ctr Hydrogen Energy, Johor Baharu 81310, Johor, Malaysia
[2] Univ Teknol Malaysia, Fac Chem & Energy Engn, Johor Baharu 81310, Johor, Malaysia
[3] Univ Teknol Malaysia, Fac Sci, Johor Baharu 81310, Johor, Malaysia
[4] Univ Hull, Fac Sci & Engn, Dept Chem Engn, Kingston Upon Hull HU6 7RX, England
[5] Univ Tarapaca, Fac Engn, Dept Mech Engn, Avda Gen Velasquez, Arica 1775, Chile
关键词
Fibrous; -silica; Lamellar structure; Pore size; Stability; Coke resistance; CARBON-DIOXIDE; NANOPARTICLES MSN; NI NANOPARTICLES; SYNTHESIS GAS; HYDROGENATION; CH4; ACTIVATION; SUPPORT; WATER; ZNO;
D O I
10.1016/j.fuel.2023.129113
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Recently, Centre of Hydrogen Energy (CHE) has developed new structures of fibrous mesoporous silica nano -particles (FMSN) and fibrous Mobil composition of matter-41 (FMCM-41) called CHE-SM and CHE-S41, respectively. Both are used as a support, along with adding 5 wt% Ni as active metal and examined on carbon dioxide (CO2) methanation. The low angle x-ray diffraction (XRD) and transmission electron microscopy (TEM) results proved that Ni/CHE-S41 possessed a hexagonal structure while Ni/CHE-SM was discovered in a lamellar structure. In addition, the XRD and N2 adsorption-desorption revealed that Ni particles were deposited on the surface of CHE-SM due to the smaller support pore size (4.41 nm) than the average Ni particles diameter (5.61 nm) resulting in higher basicity and reducibility. Meanwhile, Ni/CHE-S41 revealed deposition of Ni particles in the pore due to difference in support pore size (4.89 nm) compared to average Ni particles diameter (4.01 nm). Consequently, Ni/CHE-SM performed higher CO2 conversion (88.6 %) than Ni/CHE-S41 (82.9%) at 500 degrees C, while both achieved 100 % selectivity towards methane. Furthermore, the Ni/CHE-SM displayed excellent resistance towards coke formation during 50 h stability test at 500 degrees C. It is confirmed as Ni/CHE-SM exhibited a weight loss of 0.469% in TGA analysis and a G:D band ratio of 0.43 in Raman spectroscopy, both of which were lower than the corresponding values of Ni/CHE-S41 (0.596% weight loss and 0.74 G:D band ratio). These properties of Ni/CHE-SM are beneficial in methane production field as coke formation could affect the equi-librium of CO2 methanation process.
引用
收藏
页数:13
相关论文
共 96 条
[1]   Dry reforming of methane to hydrogen-rich syngas over robust fibrous KCC-1 stabilized nickel catalyst with high activity and coke resistance [J].
Abdulrasheed, A. A. ;
Jalil, A. A. ;
Hamid, M. Y. S. ;
Siang, T. J. ;
Fatah, N. A. A. ;
Izan, S. M. ;
Hassan, N. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (36) :18549-18561
[2]   Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy [J].
Aldana, P. A. Ussa ;
Ocampo, F. ;
Kobl, K. ;
Louis, B. ;
Thibault-Starzyk, F. ;
Daturi, M. ;
Bazin, P. ;
Thomas, S. ;
Roger, A. C. .
CATALYSIS TODAY, 2013, 215 :201-207
[3]   Highly active PdPt bimetallic nanoparticles synthesized by one-step bioreduction method: Characterizations, anticancer, antibacterial activities and evaluation of their catalytic effect for hydrogen generation [J].
Aygun, Aysenur ;
Gulbagca, Fulya ;
Altuner, Elif Esra ;
Bekmezci, Muhammed ;
Gur, Tugba ;
Karimi-Maleh, Hassan ;
Karimi, Fatemeh ;
Vasseghian, Yasser ;
Sen, Fatih .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (17) :6666-6679
[4]   Exploring kaolinite as dry methane reforming catalyst support: Influences of chemical activation, organic ligand functionalization and calcination temperature [J].
Ayodele, Olumide Bolarinwa ;
Abdullah, Ahmad Zuhairi .
APPLIED CATALYSIS A-GENERAL, 2019, 576 :20-31
[5]   Ni Nanoparticles on Reducible Metal Oxides (Sm2O3, CeO2, ZnO) as Catalysts for CO2 Methanation [J].
Ayub, Athirah ;
Bahruji, Hasliza ;
Mahadi, Abdul Hanif .
BULLETIN OF CHEMICAL REACTION ENGINEERING AND CATALYSIS, 2021, 16 (03) :641-650
[6]   Methanation of carbon dioxide on metal-promoted mesostructured silica nanoparticles [J].
Aziz, M. A. A. ;
Jalil, A. A. ;
Triwahyono, S. ;
Sidika, S. M. .
APPLIED CATALYSIS A-GENERAL, 2014, 486 :115-122
[7]   Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation [J].
Aziz, M. A. A. ;
Jalil, A. A. ;
Triwahyono, S. ;
Mukti, R. R. ;
Taufiq-Yap, Y. H. ;
Sazegar, M. R. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 147 :359-368
[8]   Reaction mechanisms of carbon dioxide methanation [J].
Baraj, Erlisa ;
Vagasky, Stanislav ;
Hlincik, Tomas ;
Ciahotny, Karel ;
Tekac, Viktor .
CHEMICAL PAPERS, 2016, 70 (04) :395-403
[9]   MESOPOROUS MOLECULAR SIEVE MCM-41 SYNTHESIS FROM FLUORIDE MEDIA [J].
Bastos, F. S. ;
Lima, O. A. ;
Raymundo Filho, C. ;
Fernandes, L. D. .
BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2011, 28 (04) :649-658
[10]   Pilot scale intensification of rubber seed (Hevea brasiliensis) oil via chemical interesterification using hydrodynamic cavitation technology [J].
Bokhari, Awais ;
Yusup, Suzana ;
Chuah, Lai Fatt ;
Klemes, Jiri Jaromir ;
Asif, Saira ;
Ali, Basit ;
Akbar, Majid Majeed ;
Kamil, Ruzaimah Nik M. .
BIORESOURCE TECHNOLOGY, 2017, 242 :272-282