Enhancement of quality and quantity of woody biomass produced in forests using machine learning algorithms

被引:10
|
作者
Peng, Wei [1 ]
Sadaghiani, Omid Karimi [1 ,2 ]
机构
[1] Univ Regina, Fac Engn & Appl Sci, Regina, SK, Canada
[2] Atilim Univ, Engn Fac, Dept Energy Syst Engn, Ankara, Turkiye
来源
BIOMASS & BIOENERGY | 2023年 / 175卷
关键词
Machine learning; Forest; Woody biomass; Quality; Quantity; PREDICTION; MODEL; SYSTEM; ENERGY; EVAPOTRANSPIRATION; HYDROLYSIS; MANAGEMENT; NITROGEN;
D O I
10.1016/j.biombioe.2023.106884
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Forest is considered a significant source of woody biomass production. Sustainable production of wood, lower emittance of CO2 from burning, and lower amount of sulfur and heavy metals are the advantages of wood rather than fossil fuels. The quality and quantity of woody biomass production are a function of some operations including genetic modifications, high-quality forestry, evaluation, monitoring, storage, and transportation. Due to surveying numerous related works, it was found that there is a considerable reviewing gap in analyzing and collecting the applications of Machine Learning in the quality and quantity of woody biomass. To fill this gap in the current work, the above-mentioned operations are explained followed by the applications of Machine Learning algorithms. Conclusively, Machine Learning and Deep Learning can be employed in estimating main effective factors on trees growth, classification of seeds, trees, and regions, as well as providing decision-making tools for farmers or governors, evaluation of biomass, understanding the relation between the woody bimass internal structure and bio-fuel production, the ultimate and proximate analyses, prediction of wood contents and dimensions, determination of the proportion of mixed woody materials, monitoring for early disease identifi-cation and classification, classifying trees diseases, estimating evapotranspiration, collecting information about forest regions and its quality, nitrogen concentration in trees, choosing viable storage sites for storage depots and improving the solution, classifying different filling levels in silage, estimating acetic acid synthesis and aerobic reactions in silage, determining crop quantity in silo, estimating the methane production, and monitoring and predicting water content, quality and quantity of stored biomass, forecasting the demand, path way and on-time performance predicting, truck traffic predicting, and behavioral analysis and facility planning.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Sentiment and semantic analysis: Urban quality inference using machine learning algorithms
    Ho, Emily
    Schneider, Michelle
    Somanath, Sanjay
    Yu, Yinan
    Thuvander, Liane
    ISCIENCE, 2024, 27 (07)
  • [42] Efficient Prediction of Water Quality Index (WQI) Using Machine Learning Algorithms
    Md. Mehedi Hassan
    Md. Mahedi Hassan
    Laboni Akter
    Md. Mushfiqur Rahman
    Sadika Zaman
    Khan Md. Hasib
    Nusrat Jahan
    Raisun Nasa Smrity
    Jerin Farhana
    M. Raihan
    Swarnali Mollick
    Human-Centric Intelligent Systems, 2021, 1 (3-4): : 86 - 97
  • [43] Use of Machine Learning Algorithms for Weld Quality Monitoring using Acoustic Signature
    Sumesh, A.
    Rameshkumar, K.
    Mohandas, K.
    Babu, R. Shyam
    BIG DATA, CLOUD AND COMPUTING CHALLENGES, 2015, 50 : 316 - 322
  • [44] Evaluation and analysis of teaching quality of university teachers using machine learning algorithms
    Zhong, Ying
    JOURNAL OF INTELLIGENT SYSTEMS, 2023, 32 (01)
  • [45] Improve quality of service for the Internet of Things using Blockchain & machine learning algorithms
    Chesuh, Lawrence Nforh
    Fernandez-Diaz, Ramon Angel
    Alija-Perez, Jose Manuel
    Benavides-Cuellar, Carmen
    Alaiz-Moreton, Hector
    INTERNET OF THINGS, 2024, 26
  • [46] Groundwater Quality Assessment and Irrigation Water Quality Index Prediction Using Machine Learning Algorithms
    Hussein, Enas E.
    Derdour, Abdessamed
    Zerouali, Bilel
    Almaliki, Abdulrazak
    Wong, Yong Jie
    los Santos, Manuel Ballesta-de
    Ngoc, Pham Minh
    Hashim, Mofreh A.
    Elbeltagi, Ahmed
    WATER, 2024, 16 (02)
  • [47] A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests
    Wu, Dazhong
    Jennings, Connor
    Terpenny, Janis
    Gao, Robert X.
    Kumara, Soundar
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2017, 139 (07):
  • [48] Smart quality control powered by machine learning algorithms
    Bonomi, Niko
    Cardoso, Felipe
    Confalonieri, Matteo
    Daniele, Fabio
    Ferrario, Andrea
    Foletti, Michele
    Giordano, Silvia
    Luceri, Luca
    Pedrazzoli, Paolo
    2021 IEEE 17TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2021, : 764 - 770
  • [49] Resource Quality Prediction Based on Machine Learning Algorithms
    Wang, Yu
    Yang, Dingyu
    Shi, Yunfan
    Wang, Yizhen
    Chen, Wanli
    2017 4TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2017, : 1541 - 1545
  • [50] Machine learning algorithms for efficient water quality prediction
    Azrour, Mourade
    Mabrouki, Jamal
    Fattah, Ghizlane
    Guezzaz, Azedine
    Aziz, Faissal
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (02) : 2793 - 2801