Euclid preparation XXII. Selection of quiescent galaxies from mock photometry using machine learning

被引:5
|
作者
Humphrey, A. [1 ,2 ]
Bisigello, L. [3 ]
Cunha, P. A. C. [1 ,4 ]
Bolzonella, M. [3 ]
Fotopoulou, S. [5 ]
Caputi, K. [6 ]
Tortora, C. [7 ]
Zamorani, G. [3 ]
Papaderos, P. [8 ,9 ]
Vergani, D. [3 ]
Brinchmann, J. [1 ]
Moresco, M. [3 ,10 ]
Amara, A. [11 ]
Auricchio, N. [3 ]
Baldi, M. [3 ,10 ,12 ]
Bender, R. [13 ,14 ]
Bonino, D. [15 ]
Branchini, E. [16 ,17 ]
Brescia, M. [7 ]
Camera, S. [15 ,18 ,19 ]
Capobianco, V. [15 ]
Carbone, C. [20 ]
Carretero, J. [21 ,22 ]
Castander, F. J. [23 ,24 ]
Castellano, M. [25 ]
Cavuoti, S. [7 ,23 ,26 ,27 ]
Cimatti, A. [28 ,29 ]
Cledassou, R. [30 ,31 ]
Congedo, G. [32 ]
Conselice, C. J. [33 ]
Conversi, L. [34 ,35 ]
Copin, Y. [36 ]
Corcione, L. [15 ]
Courbin, F. [37 ]
Cropper, M. [38 ]
Da Silva, A. [8 ,39 ]
Degaudenzi, H. [40 ]
Douspis, M. [41 ]
Dubath, F. [40 ]
Duncan, C. A. J. [42 ]
Dupac, X. [35 ]
Dusini, S. [43 ]
Farrens, S. [44 ]
Ferriol, S. [36 ]
Frailis, M. [45 ]
Franceschi, E. [3 ]
Fumana, M. [20 ]
Gomez-Alvarez, P. [35 ,46 ]
Galeotta, S. [45 ]
Garilli, B. [20 ]
机构
[1] Univ Porto, Inst Astrofis & Ciencias Espaco, CAUP, Rua Estrelas, P-4150762 Porto, Portugal
[2] Univ Minho, DTx Digital Transformat CoLAB, Bldg 1,Azurem Campus, P-4800058 Guimaraes, Portugal
[3] INAF, Osservatorio Astrofis & Sci Spazio Bologna, Via Piero Gobetti 93-3, I-40129 Bologna, Italy
[4] Univ Porto, Fac Ciencias, Rua Campo Alegre, P-4150007 Porto, Portugal
[5] Univ Bristol, Sch Phys, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England
[6] Univ Groningen, Kapteyn Astron Inst, POB 800, NL-9700 AV Groningen, Netherlands
[7] INAF, Osservatorio Astron Capodimonte, Via Moiariello 16, I-80131 Naples, Italy
[8] Univ Lisbon, Dept Fis, Fac Ciencias, Edificio C8, P-1749016 Lisbon, Portugal
[9] Univ Lisbon, Inst Astrofis & Ciencias Espaco, Fac Ciencias, P-1349018 Lisbon, Portugal
[10] Alma Mater Studiorum Univ Bologna, Dipartimento Fis & Astron, Via Piero Gobetti 93-2, I-40129 Bologna, Italy
[11] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England
[12] INFN Bologna, Via Irnerio 46, I-40126 Bologna, Italy
[13] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany
[14] Ludwig Maximilians Univ Munchen, Univ Sternwarte Munchen, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany
[15] INAF, Osservatorio Astrofis Torino, Via Osservatorio 20, I-10025 Pino Torinese TO, Italy
[16] Roma Tre Univ, Dept Math & Phys, Via Vasca Navale 84, I-00146 Rome, Italy
[17] INFN, Sez Roma Tre, Via Vasca Navale 84, I-00146 Rome, Italy
[18] Univ Torino, Dipartimento Fis, Via P Giuria 1, I-10125 Turin, Italy
[19] INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy
[20] INAF IASF Milano, Via Alfonso Corti 12, I-20133 Milan, Italy
[21] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Campus UAB, Bellaterra 08193, Barcelona, Spain
[22] Port Informacio Cient, Campus UAB,C Albareda S-N, Bellaterra 08193, Barcelona, Spain
[23] Inst Estudis Espacials Catalunya IEEC, Carrer Gran Capita 2-4, Barcelona 08034, Spain
[24] CSIC, Inst Space Sci ICE, Campus UAB,Carrer Can Magrans S-N, Barcelona 08193, Spain
[25] INAF, Osservatorio Astron Roma, Via Frascati 33, I-00078 Monte Porzio Catone, Italy
[26] Univ Federico II, Dept Phys E Pancini, Via Cinthia 6, I-80126 Naples, Italy
[27] INFN, Sect Naples, Via Cinthia 6, I-80126 Naples, Italy
[28] Augusto Righi Alma Mater Studiorum Univ Bologna, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy
[29] INAF, Osservatorio Astrofis Arcetri, Largo E Fermi 5, I-50125 Florence, Italy
[30] Ctr Natl Etud Spatiales, 18 Ave Edouard Belin, F-31400 Toulouse, France
[31] Inst Natl Phys Nucl & Phys Particules, 3 Rue Michel Ange, F-75794 Paris 16, France
[32] Univ Edinburgh, Inst Astron, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland
[33] Univ Manchester, Dept Phys & Astron, Ctr Astrophys, Jodrell Bank, Oxford Rd, Manchester M13 9PL, Lancs, England
[34] European Space Agcy ESRIN, Largo Galileo Galilei 1, I-00044 Rome, Italy
[35] ESAC ESA, Camino Bajo Castillo S-N, Madrid 28692, Spain
[36] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, IN2P3,IP2I Lyon,UMR 5822, F-69622 Villeurbanne, France
[37] Ecole Polytechn Fed Lausanne EPFL, Inst Phys, Astrophys Lab, Observ Sauverny, Chemin Pegasi 51, CH-1290 Versoix, Switzerland
[38] Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England
[39] Univ Lisbon, Inst Astrofis & Ciencias Espaco, Fac Ciencias, P-1749016 Lisbon, Portugal
[40] Univ Geneva, Dept Astron, Ch Ec 16, CH-1290 Versoix, Switzerland
[41] Univ Paris Saclay, CNRS, Inst Astrophys Spatiale, Rue Jean Dominique Cassini, F-91440 Bures Sur Yvette, France
[42] Univ Oxford, Dept Phys, Keble Rd, Oxford OX1 3RH, England
[43] INFN Padova, Via Marzolo 8, I-35131 Padua, Italy
[44] Univ Paris, Univ Paris Saclay, CNRS, AIM,CEA, F-91191 Gif Sur Yvette, France
[45] INAF, Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34143 Trieste, Italy
[46] FRACTAL SLNE, Calle Tulipan 2,Portal 13 1A, Las Rozas De Madrid 28231, Spain
[47] Aix Marseille Univ, CPPM, CNRS, IN2P3,CPPM, 902,Case,13288,163 Ave Luminy, F-13009 Marseille, France
[48] Ist Nazl Astrofis INAF, Osservatorio Astrofis & Sci Spazio OAS, Via Gobetti 93-3, I-40127 Bologna, Italy
[49] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy
[50] INAF, Osservatorio Astron Padova, Via Osservatorio 5, I-35122 Padua, Italy
基金
欧洲研究理事会; 美国国家航空航天局; 芬兰科学院;
关键词
galaxies: photometry; galaxies: high-redshift; galaxies: evolution; galaxies: general; methods: statistical; DIGITAL SKY SURVEY; STAR-FORMATION HISTORIES; EMISSION-LINE GALAXIES; STELLAR MASS; POPULATION SYNTHESIS; FORMING GALAXIES; EVOLVED GALAXIES; FORMATION RATES; REDSHIFTS; CLASSIFICATION;
D O I
10.1051/0004-6361/202244307
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Euclid Space Telescope will provide deep imaging at optical and near-infrared wavelengths, along with slitless near-infrared spectroscopy, across similar to 15 000deg(2) of the sky. Euclid is expected to detect similar to 12 billion astronomical sources, facilitating new insights into cosmology, galaxy evolution, and various other topics. In order to optimally exploit the expected very large dataset, appropriate methods and software tools need to be developed. Here we present a novel machine-learning-based methodology for the selection of quiescent galaxies using broadband Euclid I-E, Y-E, J(E), and H-E photometry, in combination with multi-wavelength photometry from other large surveys (e.g. the Rubin LSST). The ARIADNE pipeline uses meta-learning to fuse decision-tree ensembles, nearest-neighbours, and deep-learning methods into a single classifier that yields significantly higher accuracy than any of the individual learning methods separately. The pipeline has been designed to have 'sparsity awareness', such that missing photometry values are informative for the classification. In addition, our pipeline is able to derive photometric redshifts for galaxies selected as quiescent, aided by the 'pseudo-labelling' semi-supervised method, and using an outlier detection algorithm to identify and reject likely catastrophic outliers. After the application of the outlier filter, our pipeline achieves a normalised mean absolute deviation of less than or similar to 0.03 and a fraction of catastrophic outliers of less than or similar to 0.02 when measured against the COSMOS2015 photometric redshifts. We apply our classification pipeline to mock galaxy photometry catalogues corresponding to three main scenarios: (i) Euclid Deep Survey photometry with ancillary ugriz, WISE, and radio data; (ii) Euclid Wide Survey photometry with ancillary ugriz, WISE, and radio data; and (iii) Euclid Wide Survey photometry only, with no foreknowledge of galaxy redshifts. In a like-for-like comparison, our classification pipeline outperforms UVJ selection, in addition to the Euclid I-E - Y-E, J(E) - H-E and u - I-E, I-E - J(E) colour-colour methods, with improvements in completeness and the F1-score (the harmonic mean of precision and recall) of up to a factor of 2.
引用
收藏
页数:36
相关论文
共 8 条
  • [1] Euclid: the selection of quiescent and star-forming galaxies using observed colours
    Bisigello, L.
    Kuchner, U.
    Conselice, C. J.
    Andreon, S.
    Bolzonella, M.
    Duc, P-A
    Garilli, B.
    Humphrey, A.
    Maraston, C.
    Moresco, M.
    Pozzetti, L.
    Tortora, C.
    Zamorani, G.
    Auricchio, N.
    Brinchmann, J.
    Capobianco, V
    Carretero, J.
    Castander, F. J.
    Castellano, M.
    Cavuoti, S.
    Cimatti, A.
    Cledassou, R.
    Congedo, G.
    Conversi, L.
    Corcione, L.
    Cropper, M. S.
    Dusini, S.
    Frailis, M.
    Franceschi, E.
    Franzetti, P.
    Fumana, M.
    Hormuth, F.
    Israel, H.
    Jahnke, K.
    Kermiche, S.
    Kitching, T.
    Kohley, R.
    Kubik, B.
    Kunz, M.
    Le Fevre, O.
    Ligori, S.
    Lilje, P. B.
    Lloro, I
    Maiorano, E.
    Marggraf, O.
    Massey, R.
    Masters, D. C.
    Mei, S.
    Mellier, Y.
    Meylan, G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 494 (02) : 2337 - 2354
  • [2] Euclid preparation - XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images
    Bisigello, L.
    Conselice, C. J.
    Baes, M.
    Bolzonella, M.
    Brescia, M.
    Cavuoti, S.
    Cucciati, O.
    Humphrey, A.
    Hunt, L. K.
    Maraston, C.
    Pozzetti, L.
    Tortora, C.
    van Mierlo, S. E.
    Aghanim, N.
    Auricchio, N.
    Baldi, M.
    Bender, R.
    Bodendorf, C.
    Bonino, D.
    Branchini, E.
    Brinchmann, J.
    Camera, S.
    Capobianco, V.
    Carbone, C.
    Carretero, J.
    Castander, F. J.
    Castellano, M.
    Cimatti, A.
    Congedo, G.
    Conversi, L.
    Copin, Y.
    Corcione, L.
    Courbin, F.
    Cropper, M.
    Da Silva, A.
    Degaudenzi, H.
    Douspis, M.
    Dubath, F.
    Duncan, C. A. J.
    Dupac, X.
    Dusini, S.
    Farrens, S.
    Ferriol, S.
    Frailis, M.
    Franceschi, E.
    Franzetti, P.
    Fumana, M.
    Garilli, B.
    Gillard, W.
    Gillis, B.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 520 (03) : 3529 - 3548
  • [3] Machine learning technique for morphological classification of galaxies from the SDSS: I. Photometry-based approach
    Vavilova, I. B.
    Dobrycheva, D., V
    Vasylenko, M. Yu
    Elyiv, A. A.
    Melnyk, O., V
    Khramtsov, V
    ASTRONOMY & ASTROPHYSICS, 2021, 648
  • [4] Retrieval of the physical parameters of galaxies from WEAVE-StePS-like data using machine learning
    Angthopo, J.
    Granett, B. R.
    La Barbera, F.
    Longhetti, M.
    Iovino, A.
    Fossati, M.
    Ditrani, F. R.
    Costantin, L.
    Zibetti, S.
    Gallazzi, A.
    Sanchez-Blazquez, P.
    Tortora, C.
    Spiniello, C.
    Poggianti, B.
    Vazdekis, A.
    Balcells, M.
    Bardelli, S.
    Benn, C. R.
    Bianconi, M.
    Bolzonella, M.
    Busarello, G.
    Cassara, L. P.
    Corsini, E. M.
    Cucciati, O.
    Dalton, G.
    Ferre-Mateu, A.
    Garcia-Benito, R.
    Gonzalez Delgado, R. M.
    Gafton, E.
    Gullieuszik, M.
    Haines, C. P.
    Iodice, E.
    Ikhsanova, A.
    Jin, S.
    Knapen, J. H.
    McGee, S.
    Mercurio, A.
    Merluzzi, P.
    Morelli, L.
    Moretti, A.
    Murphy, D. N. A.
    Pizzella, A.
    Pozzetti, L.
    Ragusa, R.
    Trager, S. C.
    Vergani, D.
    Vulcani, B.
    Talia, M.
    Zucca, E.
    ASTRONOMY & ASTROPHYSICS, 2024, 690
  • [5] Predicting the neutral hydrogen content of galaxies from optical data using machine learning
    Rafieferantsoa, Mika
    Andrianomena, Sambatra
    Dave, Romeel
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 479 (04) : 4509 - 4525
  • [6] AUTOMATIC SELECTION AND ANALYSIS OF VERB AND ADJECTIVE SYNONYMS FROM JAPANESE SENTENCES USING MACHINE LEARNING
    Murata, Masaki
    Orikane, Kazuki
    Akae, Ryota
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2019, 15 (06): : 2135 - 2147
  • [7] Detecting ulcerative colitis from colon samples using efficient feature selection and machine learning
    Khorasani, Hanieh Marvi
    Usefi, Hamid
    Pena-Castillo, Lourdes
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [8] Optimal Channels and Features Selection Based ADHD Detection From EEG Signal Using Statistical and Machine Learning Techniques
    Maniruzzaman, Md.
    Hasan, Md. Al Mehedi
    Asai, Nobuyoshi
    Shin, Jungpil
    IEEE ACCESS, 2023, 11 : 33570 - 33583