ON FINITE FACTORIZED GROUPS WITH TX-SUBNORMAL SUBGROUPS

被引:0
|
作者
Monakhov, V. S. [1 ]
Trofimuk, A. A. [2 ]
机构
[1] F Skorina Gomel Univ, Gomel, BELARUS
[2] A Pushkin Brest State Univ, Brest, BELARUS
关键词
D O I
10.1007/s11253-023-02154-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recall that a subgroup H is called T-subnormal in G if either H = G or there is a chain of subgroups H = H-0 = H-1 = ... =H-n = G such that |H-i : Hi-1| ? T for all i. Let X be a normal subgroup of the group G and let T be the set of natural numbers satisfying the condition (A). We introduce the following definition: A subgroup H of the group G is called a TX-subnormal subgroup if H is T-subnormal in HX. Moreover, we study factorizable groups G = AB with TX-subnormal factors A and B. Under additional restrictions imposed on A, B, T, and X, we obtain new sufficient conditions for the partial solubility and supersolubility of the analyzed group G.
引用
收藏
页码:1547 / 1555
页数:9
相关论文
共 50 条
  • [1] SUBNORMAL SUBGROUPS OF FACTORIZED GROUPS
    STONEHEWER, SE
    LECTURE NOTES IN MATHEMATICS, 1987, 1281 : 158 - 175
  • [2] On subnormal subgroups of factorized groups
    Franciosi, S
    de Giovanni, F
    Sysak, YP
    JOURNAL OF ALGEBRA, 1997, 198 (02) : 469 - 480
  • [3] On ascending and subnormal subgroups of infinite factorized groups
    F. De Glovanni
    S. Franclosi
    Ya. P. Sysak
    Ukrainian Mathematical Journal, 1997, 49 (6) : 943 - 949
  • [4] On σ-Subnormal Subgroups of Finite Groups
    S. F. Kamornikov
    V. N. Tyutyanov
    Siberian Mathematical Journal, 2020, 61 : 266 - 270
  • [5] On σ-Subnormal Subgroups of Finite Groups
    Kamornikov, S. F.
    Tyutyanov, V. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2020, 61 (02) : 266 - 270
  • [6] On σ-Subnormal Subgroups of Finite Groups
    Guo, Wenbin
    Safonova, Inna N.
    Skiba, Alexander N.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2021, 45 (06) : 813 - 824
  • [7] On finite groups factorized by σ-nilpotent subgroups
    Wu, Zhenfeng
    Zhang, Chi
    Guo, Wenbin
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (04) : 1785 - 1791
  • [8] FINITE GROUPS WITH WEAKLY SUBNORMAL AND PARTIALLY SUBNORMAL SUBGROUPS
    Huang, J.
    Hu, B.
    Skiba, A. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (01) : 169 - 177
  • [9] Finite Groups with Weakly Subnormal and Partially Subnormal Subgroups
    J. Huang
    B. Hu
    A. N. Skiba
    Siberian Mathematical Journal, 2021, 62 : 169 - 177
  • [10] Finite groups with modular σ-subnormal subgroups
    Liu, A-Ming
    Chen, Mingzhu
    Safonova, Inna N.
    Skiba, Alexander N.
    JOURNAL OF GROUP THEORY, 2024, 27 (03) : 595 - 610