Potential mechanisms of osthole against bladder cancer cells based on network pharmacology, molecular docking, and experimental validation

被引:2
|
作者
Jiang, Yunzhong [1 ]
Zhang, Mengzhao [2 ]
Wang, Lu [1 ]
Zhang, Lu [1 ]
Ma, Minghai [1 ]
Jing, Minxuan [1 ]
Li, Jianpeng [1 ]
Song, Rundong [1 ]
Zhang, Yuanquan [1 ]
Yang, Zezhong [1 ]
Zhang, Yaodong [1 ]
Pu, Yuanchun [1 ]
Qu, Xiaowei [3 ]
Fan, Jinhai [1 ,4 ]
机构
[1] Xi An Jiao Tong Univ, Dept Urol, Affiliated Hosp 1, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Vasc Surg, Affiliated Hosp 1, Xian, Peoples R China
[3] Yanan Univ, Dept Geriatr, Xianyang Hosp, Xianyang, Peoples R China
[4] Minist Educ, Key Lab Environm & Genes Related Dis, Oncol Res Lab, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Osthole; Bladder cancer; Network Pharmacology; Molecular docking; CNIDIUM-MONNIERI; WEB SERVER; THYMOQUINONE; INHIBITION; UPDATE; GENES;
D O I
10.1186/s12906-023-03938-5
中图分类号
R [医药、卫生];
学科分类号
10 ;
摘要
BackgroundOsthole was traditionally used in treatment for various diseases. However, few studies had demonstrated that osthole could suppress bladder cancer cells and its mechanism was unclear. Therefore, we performed a research to explore the potential mechanism for osthole against bladder cancer.MethodsInternet web servers SwissTargetPrediction, PharmMapper, SuperPRED, and TargetNet were used to predict the Osthole targets. GeneCards and the OMIM database were used to indicate bladder cancer targets. The intersection of two target gene fragments was used to obtain the key target genes. Protein-protein interaction (PPI) analysis was performed using the Search Tool for the Retrieval of Interacting Genes (STRING) database. Furthermore, we used gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to explore the molecular function of target genes. AutoDock software was then used to perform molecular docking of target genes,osthole and co-crystal ligand. Finally, an in vitro experiment was conducted to validate bladder cancer inhibition by osthole.ResultsOur analysis identified 369 intersection genes for osthole, the top ten target genes included MAPK1, AKT1, SRC, HRAS, HASP90AA1, PIK3R1, PTPN11, MAPK14, CREBBP, and RXRA. The GO and KEGG pathway enrichment results revealed that the PI3K-AKT pathway was closely correlated with osthole against bladder cancer. The osthole had cytotoxic effect on bladder cancer cells according to the cytotoxic assay. Additionally, osthole blocked the bladder cancer epithelial-mesenchymal transition and promoted bladder cancer cell apoptosis by inhibiting the PI3K-AKT and Janus kinase/signal transducer and activator of transcription (JAK/STAT3) pathways.ConclusionsWe found that osthole had cytotoxic effect on bladder cancer cells and inhibited invasion, migration, and epithelial-mesenchymal transition by inhibiting PI3K-AKT and JAK/STAT3 pathways in in vitro experiment. Above all, osthole might have potential significance in treatment of bladder cancer.SubjectsBioinformatics, Computational Biology, Molecular Biology.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Molecular Mechanisms of Cassia fistula against Epithelial Ovarian Cancer Using Network Pharmacology and Molecular Docking Approaches
    Kanwal, Aqsa
    Azeem, Farrukh
    Nadeem, Habibullah
    Ashfaq, Usman Ali
    Aadil, Rana Muhammad
    Kober, A. K. M. Humayun
    Rajoka, Muhammad Shahid Riaz
    Rasul, Ijaz
    PHARMACEUTICS, 2022, 14 (09)
  • [22] Uncovering the Mechanisms of Cinnamic Acid Treating Diabetic Nephropathy based on Network Pharmacology, Molecular Docking, and Experimental Validation
    Dai, Limiao
    He, Yang
    Zheng, Siqiang
    Tang, Jiyu
    Fu, Lanjun
    Zhao, Li
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2024,
  • [23] Potential Targets and Mechanisms of Phellodendrine in the Treatment of Diabetes Mellitus Based on Network Pharmacology and Molecular Docking
    Liu, Boyang
    INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2022, 84 : 190 - 201
  • [24] Network pharmacology combined with molecular docking and experimental validation to explore the potential mechanism of Cinnamomi ramulus against ankylosing spondylitis
    Wei, Wendi
    Wu, Shaofeng
    Zhou, Chenxing
    Chen, Tianyou
    Zhu, Jichong
    Feng, Sitan
    Zhan, Xinli
    Liu, Chong
    ANNALS OF MEDICINE, 2023, 55 (02)
  • [25] Mechanism of Bazhen decoction in the treatment of colorectal cancer based on network pharmacology, molecular docking, and experimental validation
    Lu, Shuai
    Sun, Xibo
    Zhou, Zhongbao
    Tang, Huazhen
    Xiao, Ruixue
    Lv, Qingchen
    Wang, Bing
    Qu, Jinxiu
    Yu, Jinxuan
    Sun, Fang
    Deng, Zhuoya
    Tian, Yuying
    Li, Cong
    Yang, Zhenpeng
    Yang, Penghui
    Rao, Benqiang
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [26] Exploration of the mechanism of Polyphyllin I against hepatocellular carcinoma based on network pharmacology, molecular docking and experimental validation
    Yilong Chen
    Qiuying Wang
    Shuixiu Bian
    Jing Dong
    Jie Xiong
    Jiamei Le
    Discover Oncology, 16 (1)
  • [27] Mechanisms of Compound Kushen Injection for the treatment of bladder cancer based on bioinformatics and network pharmacology with experimental validation
    Zhang Li-Hui
    Zhang Wan-Ying
    Xiong Jia-Ming
    Duan Xiu-Mei
    Hai Li-Na
    Zhang Yu-Liang
    Zhang Miao-Miao
    Qin Gui-Fang
    Zhang Guo-Wei
    CHINESE JOURNAL OF NATURAL MEDICINES, 2022, 20 (01) : 43 - 53
  • [28] Investigating potential mechanisms of vitamin D against thyroid cancer via network pharmacology and experimental validation
    Liu, Bin
    Hou, Bowen
    Zhao, Yu
    Gao, Fengyi
    Dong, Xiaoyin
    He, Jiageng
    CHEMICAL BIOLOGY & DRUG DESIGN, 2024, 104 (01)
  • [29] Mechanisms of Rehmannioside A Against Systemic Lupus Erythematosus Based on Network Pharmacology, Molecular Docking and Molecular Dynamics Simulation
    Yang, Guofei
    Li, Mingfang
    Zhang, Ying
    Li, Xiaohui
    Xin, Tiantian
    Hao, Jin
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2024, 82 (04) : 3489 - 3498
  • [30] Potential Mechanisms of Triptolide against Diabetic Cardiomyopathy Based on Network Pharmacology Analysis and Molecular Docking
    Zhu, Ning
    Huang, Bingwu
    Zhu, Liuyan
    Wang, Yi
    JOURNAL OF DIABETES RESEARCH, 2021, 2021