共 50 条
He adsorption and sensing properties of graphene nanoflakes doped with Mo and Nb
被引:2
作者:
Monadi, Mohammad Mahdi
[1
]
Rouhani, Morteza
[1
]
Aliabad, Javad Mokhtari
[1
]
机构:
[1] Islamic Azad Univ, Dept Chem, Sci & Res Branch, Tehran, Iran
关键词:
Helium;
adsorption;
sensor;
graphene;
Mo;
Nb;
DFT;
OPTICAL-PROPERTIES;
SENSOR;
DFT;
PERFORMANCE;
CHEMISTRY;
NITRIDE;
HELIUM;
BORON;
CU;
D O I:
10.1088/1402-4896/acccb9
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
DFT calculations have been performed to study the He adsorption on the surface of Mo-doped graphene and Nb-doped graphene nanoflakes in order to evaluate the capability of studied doped graphene sheets as effective gas sensor materials. The omega B97XD (including dispersion)/6-311++G(d,p) (LanL2DZ for Mo and Nb) level of theory were utilized in this investigation. The HOMO-LUMO gap (E-g) of the Mo-doped and Nb-doped graphene structures decreased upon He adsorption on both sheets (-37.77% and -8.33%, respectively). Therefore, the electrical conductivity of both surfaces have increased. However, alteration of the E-g value in Mo-doped graphene is very higher than that of Nb-doped graphene. So, the Mo-doped graphene is more sensitive to He molecule in comparison with Nb-doped graphene and it could be used as a gas sensor material to detect He gas. Variety analyses such as natural bond orbital (NBO), density of states (DOS), electron density distribution (ED), electron localization function (ELF) and non-covalent interaction-reduced density gradient (NCI-RDG) have been carried-out in order to better evaluate the He adsorption nature on the investigated surfaces.
引用
收藏
页数:14
相关论文