A deep learning-based histopathology classifier for Focal Cortical Dysplasia

被引:3
作者
Vorndran, Jorg [1 ,22 ]
Neuner, Christoph [1 ,22 ]
Coras, Roland [1 ,22 ]
Hoffmann, Lucas [1 ,22 ]
Geffers, Simon [1 ]
Honke, Jonas [1 ]
Herms, Jochen [2 ]
Roeber, Sigrun [2 ]
Hamer, Hajo [3 ,22 ]
Brandner, Sebastian [4 ,22 ]
Hartlieb, Till [5 ,6 ,22 ]
Pieper, Tom [6 ]
Kudernatsch, Manfred [6 ,7 ]
Bien, Christian G. [8 ]
Kalbhenn, Thilo [9 ]
Simon, Matthias [9 ]
Adle-Biassette, Homa [10 ,11 ]
Cienfuegos, Jesus [12 ]
Di Giacomo, Roberta [13 ,22 ]
Garbelli, Rita [13 ,22 ]
Miyata, Hajime [14 ]
Muhlebner, Angelika [15 ,16 ,22 ]
Raicevic, Savo [17 ]
Rauramaa, Tuomas [18 ,19 ,22 ]
Rogerio, Fabio [20 ,21 ]
Bluemcke, Ingmar [1 ,22 ]
Jabari, Samir [1 ,22 ]
机构
[1] Univ Klinikum Erlangen, Dept Neuropathol, Erlangen, Germany
[2] Ludwig Maximilian Univ Munchen, Zent Neuropathol, Munich, Germany
[3] FAU Erlangen Nurnberg, Univ Klinikum Erlangen, Epilepsy Ctr, Erlangen, Germany
[4] Univ Klinikum Erlangen, Dept Neurosurg, Erlangen, Germany
[5] Schoen Klin Vogtareuth, Ctr Pediat Neurol Neurorehabil & Epileptol, Vogtareuth, Germany
[6] Paracelsus Med Univ Salzburg, Res Inst Rehabil Transit Palliat, Salzburg, Austria
[7] Schoen Klin Vogtareuth, Ctr Neurosurg Epilepsy Surg Spine Surg & Scoliosi, Vogtareuth, Germany
[8] Univ Klinikum Ostwestfalen Lippe, Med Sch, Dept Epileptol Krankenhaus Mara, Bielefeld, Germany
[9] Univ Klinikum Ostwestfalen Lippe, Med Sch, Dept Neurosurg, Evangel Klinikum Bethel, Bielefeld, Germany
[10] Univ Paris Cite, NeuroDiderot, Inserm, Paris, France
[11] Hop Lariboisiere, AP HP, Serv Anat Pathol, Paris, France
[12] Hosp HMG, Int Ctr Epilepsy Surg, Mexico City, Mexico
[13] Fdn IRCCS Ist Neurol Carlo Besta, Epilepsy Unit, Milan, Italy
[14] Akita Cerebrospinal & Cardiovasc Ctr, Res Inst Brain & Blood Vessels, Dept Neuropathol, Akita, Japan
[15] Univ Med Ctr Utrecht, UMC Utrecht Brain Ctr, Dept Neuro Pathol, Utrecht, Netherlands
[16] Univ Utrecht, Utrecht, Netherlands
[17] Clin Ctr Serbia, Dept Pathol, Lab Neuropathol, Belgrade, Serbia
[18] Kuopio Univ Hosp, Dept Pathol, Kuopio, Finland
[19] Univ Eastern Finland, Kuopio, Finland
[20] Univ Estadual Campinas, Dept Pathol, Sao Paulo, Brazil
[21] Brazilian Inst Neurosci & Neurotechnol, Sao Paulo, Brazil
[22] EpiCare, European Reference Network ERN, Lyon, France
关键词
Cortex; Epilepsy; Digital pathology; Deep learning; Classification; FCD2; MOGHE; mMCD; FCD1; Convolutional neuronal network; CONSENSUS CLASSIFICATION; EXTRACELLULAR-MATRIX; EPILEPSY SURGERY; BRAIN-TISSUE; TASK-FORCE; INTEROBSERVER; AGREEMENT; SPECTRUM;
D O I
10.1007/s00521-023-08364-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A light microscopy-based histopathology diagnosis of human brain specimens obtained from epilepsy surgery remains the gold standard to confirm the underlying cause of a patient's focal epilepsy and further inform postsurgical patient management. The differential diagnosis of neocortical specimens in the realm of epilepsy surgery remains, however, challenging. Herein, we developed an open access, deep learning-based classifier to histopathologically assess whole slide microscopy images (WSI) and to automatically recognize various subtypes of Focal Cortical Dysplasia (FCD), according to the ILAE consensus classification update of 2022. We trained a convolutional neuronal network (CNN) with fully digitalized WSI of hematoxylin-eosin stainings obtained from 125 patients covering the spectrum of mild malformation of cortical development (mMCD), mMCD with oligodendroglial hyperplasia in epilepsy (MOGHE), FCD ILAE Type 1a, 2a and 2b using 414 formalin-fixed and paraffin-embedded archival tissue blocks. An additional series of 198 postmortem tissue blocks from 59 patients without neurological disorders served as control to train the CNN for homotypic frontal, temporal and occipital areas and heterotypic Brodmann areas 4 and 17, entorhinal cortex and dentate gyrus. Special stains and immunohistochemical reactions were used to comprehensively annotate the region of interest. We then programmed a novel tile extraction pipeline and graphical dashboard to visualize all areas on the WSI recognized by the CNN. Our deep learning-based classifier is able to compute 1000 x 1000 mu m large tiles and recognizes 25 anatomical regions and FCD categories with an accuracy of 98.8% (F1 score = 0.82). Microscopic review of regions predicted by the network confirmed these results. This deep learning-based classifier will be made available as online web application to support the differential histopathology diagnosis in neocortical human brain specimens obtained from epilepsy surgery. It will also serve as blueprint to build a digital histopathology slide suite addressing all major brain diseases encountered in patients with surgically amenable focal epilepsy.
引用
收藏
页码:12775 / 12792
页数:18
相关论文
共 50 条
  • [41] Deep histopathology genotype-phenotype analysis of focal cortical dysplasia type II differentiates between the GATOR1-altered autophagocytic subtype IIa and MTOR-altered migration deficient subtype IIb
    Honke, Jonas
    Hoffmann, Lucas
    Coras, Roland
    Kobow, Katja
    Leu, Costin
    Pieper, Tom
    Hartlieb, Till
    Bien, Christian G.
    Woermann, Friedrich
    Cloppenborg, Thomas
    Kalbhenn, Thilo
    Gaballa, Ahmed
    Hamer, Hajo
    Brandner, Sebastian
    Roessler, Karl
    Doerfler, Arnd
    Rampp, Stefan
    Lemke, Johannes R.
    Baldassari, Sara
    Baulac, Stephanie
    Lal, Dennis
    Nuernberg, Peter
    Bluemcke, Ingmar
    ACTA NEUROPATHOLOGICA COMMUNICATIONS, 2023, 11 (01)
  • [42] Detection of gastrointestinal anomalies with a deep learning-based ensemble classifier approach
    Akalin, Fatma
    Yumusak, Nejat
    PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2024, 30 (03): : 366 - 373
  • [43] Deep Learning-Based Discrimination of Focal Electroencephalogram Signals Employing Cross Stockwell Transform
    Modak, Sudip
    Chatterjee, Soumya
    Roy, Saptarshi
    2022 IEEE 6TH INTERNATIONAL CONFERENCE ON CONDITION ASSESSMENT TECHNIQUES IN ELECTRICAL SYSTEMS, CATCON, 2022, : 130 - 134
  • [44] Cortical development and focal cortical dysplasia
    Bentivoglio, M
    Tassi, L
    Pech, E
    Costa, C
    Fabene, PF
    Spreafico, R
    EPILEPTIC DISORDERS, 2003, 5 : S27 - S34
  • [45] Deep learning-based approach to the characterization and quantification of histopathology in mouse models of colitis
    Kobayashi, Soma
    Shieh, Jason
    de Sabando, Ainara Ruiz
    Kim, Julie
    Liu, Yang
    Zee, Sui Y.
    Prasanna, Prateek
    Bialkowska, Agnieszka B.
    Saltz, Joel H.
    Yang, Vincent W.
    PLOS ONE, 2022, 17 (08):
  • [46] A deep learning-based compression and classification technique for whole slide histopathology images
    Barsi A.
    Nayak S.C.
    Parida S.
    Shukla R.M.
    International Journal of Information Technology, 2024, 16 (7) : 4517 - 4526
  • [47] Focal cortical dysplasia is more common in boys than in girls
    Ortiz-Gonzalez, Xilma R.
    Poduri, Annapurna
    Roberts, Colin M.
    Sullivan, Joseph E.
    Marsh, Eric D.
    Porter, Brenda E.
    EPILEPSY & BEHAVIOR, 2013, 27 (01) : 121 - 123
  • [48] 18F-FDG-PET/CT for Localizing the Epileptogenic Focus in Patients with Different Types of Focal Cortical Dysplasia
    Wang, Feng
    Hong, Shu-Ting
    Zhang, Ying
    Xing, Zhen
    Lin, Yuan-Xiang
    NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2024, 20 : 211 - 220
  • [49] Deep Learning-Based Model Significantly Improves Diagnostic Performance for Assessing Renal Histopathology in Lupus Glomerulonephritis
    Shen, Luping
    Sun, Wenyi
    Zhang, Qixiang
    Wei, Mengru
    Xu, Huanke
    Luo, Xuan
    Wang, Guangji
    Zhou, Fang
    KIDNEY DISEASES, 2022, 8 (04) : 347 - 356
  • [50] Surgical strategy for focal cortical dysplasia based on the analysis of the spike onset and peak zones on magnetoencephalography
    Shirozu, Hiroshi
    Hashizume, Akira
    Masuda, Hiroshi
    Kakita, Akiyoshi
    Otsubo, Hiroshi
    Kameyama, Shigeki
    JOURNAL OF NEUROSURGERY, 2020, 133 (06) : 1850 - 1862