A deep learning-based histopathology classifier for Focal Cortical Dysplasia

被引:3
作者
Vorndran, Jorg [1 ,22 ]
Neuner, Christoph [1 ,22 ]
Coras, Roland [1 ,22 ]
Hoffmann, Lucas [1 ,22 ]
Geffers, Simon [1 ]
Honke, Jonas [1 ]
Herms, Jochen [2 ]
Roeber, Sigrun [2 ]
Hamer, Hajo [3 ,22 ]
Brandner, Sebastian [4 ,22 ]
Hartlieb, Till [5 ,6 ,22 ]
Pieper, Tom [6 ]
Kudernatsch, Manfred [6 ,7 ]
Bien, Christian G. [8 ]
Kalbhenn, Thilo [9 ]
Simon, Matthias [9 ]
Adle-Biassette, Homa [10 ,11 ]
Cienfuegos, Jesus [12 ]
Di Giacomo, Roberta [13 ,22 ]
Garbelli, Rita [13 ,22 ]
Miyata, Hajime [14 ]
Muhlebner, Angelika [15 ,16 ,22 ]
Raicevic, Savo [17 ]
Rauramaa, Tuomas [18 ,19 ,22 ]
Rogerio, Fabio [20 ,21 ]
Bluemcke, Ingmar [1 ,22 ]
Jabari, Samir [1 ,22 ]
机构
[1] Univ Klinikum Erlangen, Dept Neuropathol, Erlangen, Germany
[2] Ludwig Maximilian Univ Munchen, Zent Neuropathol, Munich, Germany
[3] FAU Erlangen Nurnberg, Univ Klinikum Erlangen, Epilepsy Ctr, Erlangen, Germany
[4] Univ Klinikum Erlangen, Dept Neurosurg, Erlangen, Germany
[5] Schoen Klin Vogtareuth, Ctr Pediat Neurol Neurorehabil & Epileptol, Vogtareuth, Germany
[6] Paracelsus Med Univ Salzburg, Res Inst Rehabil Transit Palliat, Salzburg, Austria
[7] Schoen Klin Vogtareuth, Ctr Neurosurg Epilepsy Surg Spine Surg & Scoliosi, Vogtareuth, Germany
[8] Univ Klinikum Ostwestfalen Lippe, Med Sch, Dept Epileptol Krankenhaus Mara, Bielefeld, Germany
[9] Univ Klinikum Ostwestfalen Lippe, Med Sch, Dept Neurosurg, Evangel Klinikum Bethel, Bielefeld, Germany
[10] Univ Paris Cite, NeuroDiderot, Inserm, Paris, France
[11] Hop Lariboisiere, AP HP, Serv Anat Pathol, Paris, France
[12] Hosp HMG, Int Ctr Epilepsy Surg, Mexico City, Mexico
[13] Fdn IRCCS Ist Neurol Carlo Besta, Epilepsy Unit, Milan, Italy
[14] Akita Cerebrospinal & Cardiovasc Ctr, Res Inst Brain & Blood Vessels, Dept Neuropathol, Akita, Japan
[15] Univ Med Ctr Utrecht, UMC Utrecht Brain Ctr, Dept Neuro Pathol, Utrecht, Netherlands
[16] Univ Utrecht, Utrecht, Netherlands
[17] Clin Ctr Serbia, Dept Pathol, Lab Neuropathol, Belgrade, Serbia
[18] Kuopio Univ Hosp, Dept Pathol, Kuopio, Finland
[19] Univ Eastern Finland, Kuopio, Finland
[20] Univ Estadual Campinas, Dept Pathol, Sao Paulo, Brazil
[21] Brazilian Inst Neurosci & Neurotechnol, Sao Paulo, Brazil
[22] EpiCare, European Reference Network ERN, Lyon, France
关键词
Cortex; Epilepsy; Digital pathology; Deep learning; Classification; FCD2; MOGHE; mMCD; FCD1; Convolutional neuronal network; CONSENSUS CLASSIFICATION; EXTRACELLULAR-MATRIX; EPILEPSY SURGERY; BRAIN-TISSUE; TASK-FORCE; INTEROBSERVER; AGREEMENT; SPECTRUM;
D O I
10.1007/s00521-023-08364-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A light microscopy-based histopathology diagnosis of human brain specimens obtained from epilepsy surgery remains the gold standard to confirm the underlying cause of a patient's focal epilepsy and further inform postsurgical patient management. The differential diagnosis of neocortical specimens in the realm of epilepsy surgery remains, however, challenging. Herein, we developed an open access, deep learning-based classifier to histopathologically assess whole slide microscopy images (WSI) and to automatically recognize various subtypes of Focal Cortical Dysplasia (FCD), according to the ILAE consensus classification update of 2022. We trained a convolutional neuronal network (CNN) with fully digitalized WSI of hematoxylin-eosin stainings obtained from 125 patients covering the spectrum of mild malformation of cortical development (mMCD), mMCD with oligodendroglial hyperplasia in epilepsy (MOGHE), FCD ILAE Type 1a, 2a and 2b using 414 formalin-fixed and paraffin-embedded archival tissue blocks. An additional series of 198 postmortem tissue blocks from 59 patients without neurological disorders served as control to train the CNN for homotypic frontal, temporal and occipital areas and heterotypic Brodmann areas 4 and 17, entorhinal cortex and dentate gyrus. Special stains and immunohistochemical reactions were used to comprehensively annotate the region of interest. We then programmed a novel tile extraction pipeline and graphical dashboard to visualize all areas on the WSI recognized by the CNN. Our deep learning-based classifier is able to compute 1000 x 1000 mu m large tiles and recognizes 25 anatomical regions and FCD categories with an accuracy of 98.8% (F1 score = 0.82). Microscopic review of regions predicted by the network confirmed these results. This deep learning-based classifier will be made available as online web application to support the differential histopathology diagnosis in neocortical human brain specimens obtained from epilepsy surgery. It will also serve as blueprint to build a digital histopathology slide suite addressing all major brain diseases encountered in patients with surgically amenable focal epilepsy.
引用
收藏
页码:12775 / 12792
页数:18
相关论文
共 50 条
  • [31] Black Line Sign in Focal Cortical Dysplasia IIB A 7T MRI and Electroclinicopathologic Study
    Tang, Yingying
    Blumcke, Ingmar
    Su, Ting-Yu
    Choi, Joon Yul
    Krishnan, Balu
    Murakami, Hiroatsu
    Alexopoulos, Andreas, V
    Najm, Imad M.
    Jones, Stephen E.
    Wang, Zhong Irene
    NEUROLOGY, 2022, 99 (06) : E616 - E626
  • [32] About focal cortical dysplasia (FCD) type Illa
    Giulioni, Marco
    Martinoni, Matteo
    Marucci, Gianluca
    EPILEPSY RESEARCH, 2014, 108 (10) : 1955 - 1957
  • [33] Focal Cortical Dysplasia: Diagnosis, Classification, and Treatment Options
    Pizzo, Francesco
    Fichera, Valeria
    Zanghi, Antonio
    Pratico, Andrea D.
    Vecchio, Michele
    Falsaperla, Raffaele
    Lavalle, Salvatore
    Marino, Francesco
    Palmucci, Stefano
    Belfiore, Giuseppe
    Polizzi, Agata
    JOURNAL OF PEDIATRIC NEUROLOGY, 2024, 22 (02) : 114 - 124
  • [34] Same same but different: A Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations
    Kubach, Joshua
    Muhlebner-Fahrngruber, Angelika
    Soylemezoglu, Figen
    Miyata, Hajime
    Niehusmann, Pitt
    Honavar, Mrinalini
    Rogerio, Fabio
    Kim, Se-Hoon
    Aronica, Eleonora
    Garbelli, Rita
    Vilz, Samuel
    Popp, Alexander
    Walcher, Stefan
    Neuner, Christoph
    Scholz, Michael
    Kuerten, Stefanie
    Schropp, Verena
    Roeder, Sebastian
    Eichhorn, Philip
    Eckstein, Markus
    Brehmer, Axel
    Kobow, Katja
    Coras, Roland
    Blumcke, Ingmar
    Jabari, Samir
    EPILEPSIA, 2020, 61 (03) : 421 - 432
  • [35] Focal cortical dysplasia
    Kameyama, Shigeki
    Kakita, Akiyoshi
    NEUROLOGICAL SURGERY, 2007, 35 (06): : 615 - 622
  • [36] Rapid counting of coliforms and Escherichia coli by deep learning-based classifier
    Wakabayashi, Rina
    Aoyanagi, Atsuko
    Tominaga, Tatsuya
    JOURNAL OF FOOD SAFETY, 2024, 44 (04)
  • [37] Evaluation of a Deep Learning-Based Automatic Classifier for the Classification of Perifissural Nodules
    Han, D.
    Heuvelmans, M.
    Rook, M.
    Dorrius, M.
    Van Houten, L.
    Price, N. Waterfield
    Pickup, L.
    Novotny, P.
    Declerck, J.
    Oudkerk, M.
    Van Ooijen, P. M. A.
    Gleeson, F.
    Vliegenthart, R.
    JOURNAL OF THORACIC ONCOLOGY, 2019, 14 (10) : S221 - S221
  • [38] An Efficient Deep Learning-Based Skin Cancer Classifier for an Imbalanced Dataset
    Alam, Talha Mahboob
    Shaukat, Kamran
    Khan, Waseem Ahmad
    Hameed, Ibrahim A.
    Abd Almuqren, Latifah
    Raza, Muhammad Ahsan
    Aslam, Memoona
    Luo, Suhuai
    DIAGNOSTICS, 2022, 12 (09)
  • [39] Focal cortical dysplasia type 1
    Coras, Roland
    Holthausen, Hans
    Sarnat, Harvey B.
    BRAIN PATHOLOGY, 2021, 31 (04)
  • [40] Automatic Detection of Focal Cortical Dysplasia Type II in MRI: Is the Application of Surface-Based Morphometry and Machine Learning Promising?
    Ganji, Zohreh
    Hakak, Mohsen Aghaee
    Zamanpour, Seyed Amir
    Zare, Hoda
    FRONTIERS IN HUMAN NEUROSCIENCE, 2021, 15