A deep learning-based histopathology classifier for Focal Cortical Dysplasia

被引:3
作者
Vorndran, Jorg [1 ,22 ]
Neuner, Christoph [1 ,22 ]
Coras, Roland [1 ,22 ]
Hoffmann, Lucas [1 ,22 ]
Geffers, Simon [1 ]
Honke, Jonas [1 ]
Herms, Jochen [2 ]
Roeber, Sigrun [2 ]
Hamer, Hajo [3 ,22 ]
Brandner, Sebastian [4 ,22 ]
Hartlieb, Till [5 ,6 ,22 ]
Pieper, Tom [6 ]
Kudernatsch, Manfred [6 ,7 ]
Bien, Christian G. [8 ]
Kalbhenn, Thilo [9 ]
Simon, Matthias [9 ]
Adle-Biassette, Homa [10 ,11 ]
Cienfuegos, Jesus [12 ]
Di Giacomo, Roberta [13 ,22 ]
Garbelli, Rita [13 ,22 ]
Miyata, Hajime [14 ]
Muhlebner, Angelika [15 ,16 ,22 ]
Raicevic, Savo [17 ]
Rauramaa, Tuomas [18 ,19 ,22 ]
Rogerio, Fabio [20 ,21 ]
Bluemcke, Ingmar [1 ,22 ]
Jabari, Samir [1 ,22 ]
机构
[1] Univ Klinikum Erlangen, Dept Neuropathol, Erlangen, Germany
[2] Ludwig Maximilian Univ Munchen, Zent Neuropathol, Munich, Germany
[3] FAU Erlangen Nurnberg, Univ Klinikum Erlangen, Epilepsy Ctr, Erlangen, Germany
[4] Univ Klinikum Erlangen, Dept Neurosurg, Erlangen, Germany
[5] Schoen Klin Vogtareuth, Ctr Pediat Neurol Neurorehabil & Epileptol, Vogtareuth, Germany
[6] Paracelsus Med Univ Salzburg, Res Inst Rehabil Transit Palliat, Salzburg, Austria
[7] Schoen Klin Vogtareuth, Ctr Neurosurg Epilepsy Surg Spine Surg & Scoliosi, Vogtareuth, Germany
[8] Univ Klinikum Ostwestfalen Lippe, Med Sch, Dept Epileptol Krankenhaus Mara, Bielefeld, Germany
[9] Univ Klinikum Ostwestfalen Lippe, Med Sch, Dept Neurosurg, Evangel Klinikum Bethel, Bielefeld, Germany
[10] Univ Paris Cite, NeuroDiderot, Inserm, Paris, France
[11] Hop Lariboisiere, AP HP, Serv Anat Pathol, Paris, France
[12] Hosp HMG, Int Ctr Epilepsy Surg, Mexico City, Mexico
[13] Fdn IRCCS Ist Neurol Carlo Besta, Epilepsy Unit, Milan, Italy
[14] Akita Cerebrospinal & Cardiovasc Ctr, Res Inst Brain & Blood Vessels, Dept Neuropathol, Akita, Japan
[15] Univ Med Ctr Utrecht, UMC Utrecht Brain Ctr, Dept Neuro Pathol, Utrecht, Netherlands
[16] Univ Utrecht, Utrecht, Netherlands
[17] Clin Ctr Serbia, Dept Pathol, Lab Neuropathol, Belgrade, Serbia
[18] Kuopio Univ Hosp, Dept Pathol, Kuopio, Finland
[19] Univ Eastern Finland, Kuopio, Finland
[20] Univ Estadual Campinas, Dept Pathol, Sao Paulo, Brazil
[21] Brazilian Inst Neurosci & Neurotechnol, Sao Paulo, Brazil
[22] EpiCare, European Reference Network ERN, Lyon, France
关键词
Cortex; Epilepsy; Digital pathology; Deep learning; Classification; FCD2; MOGHE; mMCD; FCD1; Convolutional neuronal network; CONSENSUS CLASSIFICATION; EXTRACELLULAR-MATRIX; EPILEPSY SURGERY; BRAIN-TISSUE; TASK-FORCE; INTEROBSERVER; AGREEMENT; SPECTRUM;
D O I
10.1007/s00521-023-08364-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A light microscopy-based histopathology diagnosis of human brain specimens obtained from epilepsy surgery remains the gold standard to confirm the underlying cause of a patient's focal epilepsy and further inform postsurgical patient management. The differential diagnosis of neocortical specimens in the realm of epilepsy surgery remains, however, challenging. Herein, we developed an open access, deep learning-based classifier to histopathologically assess whole slide microscopy images (WSI) and to automatically recognize various subtypes of Focal Cortical Dysplasia (FCD), according to the ILAE consensus classification update of 2022. We trained a convolutional neuronal network (CNN) with fully digitalized WSI of hematoxylin-eosin stainings obtained from 125 patients covering the spectrum of mild malformation of cortical development (mMCD), mMCD with oligodendroglial hyperplasia in epilepsy (MOGHE), FCD ILAE Type 1a, 2a and 2b using 414 formalin-fixed and paraffin-embedded archival tissue blocks. An additional series of 198 postmortem tissue blocks from 59 patients without neurological disorders served as control to train the CNN for homotypic frontal, temporal and occipital areas and heterotypic Brodmann areas 4 and 17, entorhinal cortex and dentate gyrus. Special stains and immunohistochemical reactions were used to comprehensively annotate the region of interest. We then programmed a novel tile extraction pipeline and graphical dashboard to visualize all areas on the WSI recognized by the CNN. Our deep learning-based classifier is able to compute 1000 x 1000 mu m large tiles and recognizes 25 anatomical regions and FCD categories with an accuracy of 98.8% (F1 score = 0.82). Microscopic review of regions predicted by the network confirmed these results. This deep learning-based classifier will be made available as online web application to support the differential histopathology diagnosis in neocortical human brain specimens obtained from epilepsy surgery. It will also serve as blueprint to build a digital histopathology slide suite addressing all major brain diseases encountered in patients with surgically amenable focal epilepsy.
引用
收藏
页码:12775 / 12792
页数:18
相关论文
共 50 条
  • [21] MRI of focal cortical dysplasia
    Urbach, Horst
    Kellner, Elias
    Kremers, Nico
    Bluemcke, Ingmar
    Demerath, Theo
    NEURORADIOLOGY, 2022, 64 (03) : 443 - 452
  • [22] Focal cortical dysplasia type IIa and IIb: MRI aspects in 118 cases proven by histopathology
    Colombo, Nadia
    Tassi, Laura
    Deleo, Francesco
    Citterio, Alberto
    Bramerio, Manuela
    Mai, Roberto
    Sartori, Ivana
    Cardinale, Francesco
    Lo Russo, Giorgio
    Spreafico, Roberto
    NEURORADIOLOGY, 2012, 54 (10) : 1065 - 1077
  • [23] Evaluation of a novel deep learning-based classifier for perifissural nodules
    Han, Daiwei
    Heuvelmans, Marjolein
    Rook, Mieneke
    Dorrius, Monique
    van Houten, Luutsen
    Price, Noah Waterfield
    Pickup, Lyndsey C.
    Novotny, Petr
    Oudkerk, Matthijs
    Declerck, Jerome
    Gleeson, Fergus
    van Ooijen, Peter
    Vliegenthart, Rozemarijn
    EUROPEAN RADIOLOGY, 2021, 31 (06) : 4023 - 4030
  • [24] Pathological Classification of Focal Cortical Dysplasia (FCD) : Personal Comments for Well Understanding FCD Classification
    Kim, Se Hoon
    Choi, Junjeong
    JOURNAL OF KOREAN NEUROSURGICAL SOCIETY, 2019, 62 (03) : 288 - 295
  • [25] Hyaline protoplasmic astrocytopathy with associated focal cortical dysplasia and hippocampal sclerosis
    Prayson, Richard A.
    CLINICAL NEUROPATHOLOGY, 2016, 35 (06) : 381 - 384
  • [26] Deep learning-based automated mitosis detection in histopathology images for breast cancer grading
    Mathew, Tojo
    Ajith, B.
    Kini, Jyoti R.
    Rajan, Jeny
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (04) : 1192 - 1208
  • [27] Mammalian target of rapamycin (mTOR) activation in focal cortical dysplasia and related focal cortical malformations
    Wong, Michael
    EXPERIMENTAL NEUROLOGY, 2013, 244 : 22 - 26
  • [28] Clinical evaluation of deep learning-based risk profiling in breast cancer histopathology and comparison to an established multigene assay
    Wang, Yinxi
    Sun, Wenwen
    Karlsson, Emelie
    Lovgren, Sandy Kang
    Acs, Balazs
    Rantalainen, Mattias
    Robertson, Stephanie
    Hartman, Johan
    BREAST CANCER RESEARCH AND TREATMENT, 2024, 206 (01) : 163 - 175
  • [29] Interobserver and intraobserver reproducibility in focal cortical dysplasia (malformations of cortical development)
    Chamberlain, Wendy A.
    Cohen, Mark L.
    Gyure, Kymberly A.
    Kleinschmidt-DeMasters, Bette K.
    Perry, Arie
    Powell, Suzanne Z.
    Qian, Jiang
    Staugaitis, Susan M.
    Prayson, Richard A.
    EPILEPSIA, 2009, 50 (12) : 2593 - 2598
  • [30] Deep learning-based detection and classification of geographic atrophy using a deep convolutional neural network classifier
    Treder, Maximilian
    Lauermann, Jost Lennart
    Eter, Nicole
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2018, 256 (11) : 2053 - 2060