A generalized geometric spectral conjugate gradient algorithm for finding zero of a monotone tangent vector field on a constant curvature Hadamard manifold

被引:2
|
作者
Zhao, Zhi [1 ]
Jin, Xiao-Qing [2 ]
Bai, Zheng-Jian [3 ]
Teng Yao, Teng- [4 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Dept Math, Hangzhou 310018, Peoples R China
[2] Univ Macau, Dept Math, Macau, Peoples R China
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[4] Zhejiang Univ Sci & Technol, Sch Sci, Dept Math, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Monotone vector field; Hadamard manifolds; Spectral conjugate gradient method; Projection method; PROXIMAL POINT ALGORITHMS; RIEMANNIAN-MANIFOLDS; PROJECTION METHOD; NEWTONS METHOD; CONVERGENCE;
D O I
10.1016/j.cam.2022.114882
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the problem of finding a zero of a monotone tangent vector field on a constant curvature Hadamard manifold. We propose a geometric spectral conjugate gradient method for solving this problem. The global convergence of the proposed method is established under some conditions. Illustrative numerical examples are also presented to show the practical effectiveness of our method. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
empty
未找到相关数据