Soliton solutions and their dynamics of local and nonlocal (2+1)-dimensional Fokas-Lenells equations

被引:4
作者
Song, Jiang-Yan [1 ]
Xiao, Yu [1 ]
Bao, Jun-Chen [1 ]
Tang, Hao-Cheng [2 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Future Technol, Harbin 150001, Peoples R China
来源
OPTIK | 2023年 / 273卷
基金
中国国家自然科学基金;
关键词
Darboux transformation; (2+1)-dimensional Fokas-Lenells equations; Local and nonlocal reductions; Soliton solutions; NON-HERMITIAN HAMILTONIANS; PORSEZIAN-DANIEL MODEL; OPTICAL SOLITONS; ROGUE WAVES; LAW; NONLINEARITY; PERTURBATION;
D O I
10.1016/j.ijleo.2022.170486
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we obtain one-fold and N-fold Darboux transformation for the integrable (2 + 1)-dimensional Fokas-Lenells equations by determinant representations. The local and Ablowitz-Musslimani type nonlocal reductions are presented to deduce new integrable systems. A key point for reduced systems is that the special eigenfunctions of spectral problem are used to guarantee the validity of the reduction conditions. Different from the nonlocal (2 + 1) dimensional Fokas-Lenells equation, the relation between spectral parameters lambda(2j) and lambda(2j-1) is required in the study of Darboux transformation for local (2 + 1)-dimensional Fokas-Lenells equation. In view of reduction formulas and different zeed solutions, multi-soliton solutions are derived. We also illustrate one-soliton and two-soliton solutions by plotting their graphs for particular values of the parameters, some of which include bright solitons, periodic waves, shock waves, breathers, dark solitons, antidark solitons, interactions and parallel propagations of mentioned type of waves. Consequently, it is clearly shown that the solutions of nonlocal (2+1)-dimensional Fokas-Lenells equation have new characteristics which differ from the ones of local case.
引用
收藏
页数:12
相关论文
共 51 条
[1]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[2]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[3]   Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan-Porsezian-Daniel model having Kerr law of nonlinear refractive index [J].
Adem, Abdullahi Rashid ;
Ntsime, Basetsana Pauline ;
Biswas, Anjan ;
Khan, Salam ;
Alzahrani, Abdullah Khamis ;
Belic, Milivoj R. .
UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2021, 22 (02) :83-86
[4]   Cubic-quartic optical solitons for Lakshmanan-Porsezian-Daniel equation by the improved Adomian decomposition scheme [J].
Al Qarni, A. A. ;
Bodaqah, A. M. ;
Mohammed, A. S. H. F. ;
Alshaery, A. A. ;
Bakodah, H. O. ;
Biswas, Anjan .
UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2022, 23 (04) :228-242
[5]   sl(2, C) as a complex Lie algebra and the associated non-Hermitian Hamiltonians with real eigenvalues [J].
Bagchi, B ;
Quesne, C .
PHYSICS LETTERS A, 2000, 273 (5-6) :285-292
[6]   Must a Hamiltonian be Hermitian? [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
AMERICAN JOURNAL OF PHYSICS, 2003, 71 (11) :1095-1102
[7]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[8]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[9]   Cubic-quartic optical soliton perturbation with Lakshmanan-Porsezian-Daniel model by semi-inverse variational principle [J].
Biswas, Anjan ;
Edoki, Joseph ;
Guggilla, Padmaja ;
Khan, Salam ;
Alzahrani, Abdullah Khamis ;
Belic, Milivoj R. .
UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2021, 22 (03) :123-127
[10]   Optical soliton perturbation with Fokas-Lenells equation using three exotic and efficient integration schemes [J].
Biswas, Anjan ;
Rezazadeh, Hadi ;
Mirzazadeh, Mohammad ;
Eslami, Mostafa ;
Ekici, Mehmet ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 165 :288-294